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5Institut Curie, PSL Research University, Unit of Biostatistics, 75005 Paris, France
6Institut Curie, PSL Research University, INSERM U900, 75005 Paris, France
7Mines Paris Tech, 77305 Cedex Fontainebleau, France
8These authors contributed equally
9Lead Contact

*Correspondence: vassili.soumelis@curie.fr

https://doi.org/10.1016/j.cell.2019.09.012
SUMMARY

Cell-cell communication involves a large number of
molecular signals that function as words of a com-
plex language whose grammar remains mostly un-
known. Here, we describe an integrative approach
involving (1) protein-level measurement of multiple
communication signals coupled to output responses
in receiving cells and (2) mathematical modeling to
uncover input-output relationships and interactions
between signals. Using human dendritic cell (DC)-T
helper (Th) cell communication as a model, we
measured 36DC-derived signals and 17 Th cytokines
broadly covering Th diversity in 428 observations.
We developed a data-driven, computationally vali-
dated model capturing 56 already described and
290 potentially novel mechanisms of Th cell specifi-
cation. By predicting context-dependent behaviors,
we demonstrate a new function for IL-12p70 as an
inducer of Th17 in an IL-1 signaling context. This
work provides a unique resource to decipher the
complex combinatorial rules governing DC-Th cell
communication and guide their manipulation for vac-
cine design and immunotherapies.

INTRODUCTION

Cell-cell communication involves the exchange of molecular

signals produced by a given cell and transmitting an effect

through specific receptors expressed on target cells. This pro-

cess requires integration of multiple communication signals

of different nature during homeostatic or stress-related re-

sponses. For example, differentiation of pluripotent hematopoi-

etic stem cells into mature myeloid or lymphoid blood cells

requires the collective action of multiple cytokines, growth fac-
432 Cell 179, 432–447, October 3, 2019 ª 2019 Elsevier Inc.
tors, and Notch ligands (Balan et al., 2018). In the context of

stress, multiple signals need to be integrated by innate and

adaptive immune cells, including cytokines, growth factors, in-

flammatory mediators, and immune checkpoints (Chen and

Flies, 2013; Macagno et al., 2007). In most studies, these

communication molecules have been studied as individual

stimuli to a target cell by gain- and loss-of-function experi-

ments. This provides important knowledge regarding the

downstream effects of the signals but prevents us from

widely addressing their function in various contexts of other

co-expressed communication signals.

Context dependency is an important aspect of verbal lan-

guage communication that can directly affect the meaning

of individual words but also modify the logic of syntactic rules

(Cariani and Rips, 2017; Kintsch and Mangalath, 2011). Simi-

larly, context dependencies may dramatically affect the func-

tion of biologically active communication signals. For

example, we have shown that 90% of the transcriptional

response to type I interferon in human CD4 T cells depends

on the cytokine context (T helper 1 [Th1], Th2, or Th17; Touzot

et al., 2014). Other studies have identified major context-

dependent functions of immune checkpoints, such as OX40-

ligand (Ito et al., 2005), and regulatory cytokines, such as

transforming growth factor b (TGF-b) (Ivanov et al., 2006;

Manel et al., 2008; Volpe et al., 2008). These studies suggest

that communication molecules function as words of a com-

plex language with grammar defining combinatorial rules of

co-expression and mutual influence of one signal over the

function (meaning) of another signal.

Three levels of biological complexity need to be integrated to

decipher those combinatorial rules: (1) the multiplicity of input

communication signals to include as many possible contextual

effects; (2) communication signals at their naturally occurring

concentrations; and (3) a large number of output responses in

target cells, reflecting the effect of cell-cell communication quan-

titatively and qualitatively. Those three levels create a bottleneck

in deciphering cell-cell communication.

mailto:vassili.soumelis@curie.fr
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Here we developed an integrative approach combining (1)

coupled protein-level measurement of multiple communication

signals and output responsemolecules in target cells; (2) a multi-

variate mathematical modeling strategy enabling us to infer the

input-output relationships for individual signals, taking into

account the context and configuration of all other signals; and

(3) experimental validation of model-derived hypotheses. We

applied this framework to decipher human dendritic cell (DC)-

Th cell communication, which potentially involves over 70

individual molecular stimuli (Chen and Flies, 2013), including

cytokines, tumor necrosis factor (TNF) family members, integ-

rins, nectins, Notch ligands, and galectins (Tindemans et al.,

2017; Zhu et al., 2010; Zygmunt and Veldhoen, 2011). These

molecules can all be expressed by DCs and function as commu-

nication signals to T cells (hereafter called Th stimuli). They can

be measured at the protein level by highly specific assays to

optimize biological relevance.

By using this unbiased data-driven approach, we could cap-

ture the simultaneous effects of large numbers of DC-T cell

communication signals in naturally occurring patterns and

expression levels. Our systems-level model revealed novel

emergent and context-dependent mechanisms controlling Th

cell differentiation. A similar framework can be applied to sys-

tematically decipher the communication of other cell types.

RESULTS

Generation of a Unique Multivariate Dataset of Human
DC-Th Cell Communication
To induce a broad range of DC molecular states expressing

various patterns of communication signals, human monocyte-

derived DCs (MoDCs) and primary blood CD11c+ DCs (bDCs),

were activated for 24 h with a diversity of DC-modulating signals

(hereafter called DC perturbators). These included 14 distinct

stimuli that were grouped in three categories reflecting various

physiopathological contexts: (1) the endogenous factors inter-

feron b (IFN-b), GM-CSF, TSLP, and PGE2; (2) the Toll-like re-

ceptor ligands lipopolysaccharide (LPS) (a Toll-like receptor 4

[TLR4] agonist), PAM3CSK4 (a TLR1 and 2 agonist), Curdlan (a

Dectin1 agonist), zymosan (a TLR2 and Dectin1 agonist), R848

(a TLR7 and 8 agonist), poly(I:C) (a TLR3 agonist), and aluminum

potassium sulfate (Alum, an NLRP3 inflammasome inducer); and

(3) the whole pathogens heat-killed Candida albicans (HKCA),

heat-killed Listeria monocytogenes (HKLM), heat-killed Staphy-

lococcus aureus (HKSA), heat-killed Streptococcus pneumoniae

(HKSP), and influenza virus (flu). These 14 DC perturbators were

used in distinct doses and combinations to further increase the

diversity of DC communication molecules and downstream

functional effects (Table S1). In each independent experiment,

we included a medium condition as a negative control and LPS

(100 ng/mL) and/or zymosan (10 mg/mL) as positive controls. A

total of 66 perturbators were used on MoDCs and 16 on bDCs,

totaling 82 distinct ‘‘DC conditions’’ (C1–C82; Table S1).

Under each DC condition, we measured 36 DC-expressed

molecules that influence Th cell differentiation in at least one

published study (STAR Methods) and can be measured with

a highly specific antibody-based assay. Twenty-nine were

measured by fluorescence-activated cell sorting (FACS) at the
DC surface (Figure S1A), and 7 were measured in the 24-h DC

culture supernatant (STAR Methods).

Following 24-h culture under each of the 82 DC perturbation

conditions, the same DC batch was used to stimulate naive

CD4 T cells in a heterologous co-culture system. On day 6 of

co-culture, we measured Th cell expansion fold (Exp Fold) and

a total of 17 distinct Th cytokines broadly representing the spec-

trum of Th cell output responses (STAR Methods). In total,

we produced a unique dataset of coupled measurements of

DC-derived Th stimuli and Th response cytokines from 428 inde-

pendent observations from 44 independent donors (Figure 1A;

Table S2).

Variability and Specificity of DC Communication Signals
We asked whether our systematic DC stimulation strategy could

generate important variations in the expression of individual DC-

derived Th stimuli. All Th stimuli were expressed over at least

three logs (Figure 1B) with high coefficients of variation (>0.44;

Figure 1C). Interleukins had higher variability (104–105) and

high coefficients of variation from 2.72 for interleukin-12 (IL-12)

p70 (IL-12) to 1.43 for IL-6. CD11a had a wide expression range

(104) but the smallest coefficient of variation (0.44), with values

distributed around the mean (Figure 1C). Hence, we were able

to generate highly variable expression patterns for all Th stimuli.

We sought to identify conserved and specific patterns of Th

stimuli in response to standard DC perturbators. We compared

the expression levels of DC-derived Th stimuli under three

conditions belonging to distinct classes of microbes—LPS

(100 ng/mL, bacteria), zymosan (10 mg/mL, fungi), and flu (13,

Viruses)—that were used across at least 17 MoDC biological

replicates (Figure 1D). Medium MoDCs (negative control) ex-

pressed lower levels of activation-associated communication

molecules (Figures 1D and S1B). We confirmed previous find-

ings, validating our experimental system: (1) zymosan induced

specifically IL-10 and IL-23, (2) flu induced a large amount of

IL-28a, and (3) LPS and zymosan induced a large amount of

IL-12 (Figures 1D and S1B). In addition, we identified novel spe-

cific inductions of DC-derived Th stimuli: zymosan-treated

MoDCs expressed the highest levels of CD54 and PVR, flu-

treated MoDCs specifically induced ICOSL, and LPS-treated

MoDCs induced the highest levels of CD30L and CD83 (Fig-

ure 1D). Specificity of expression of a given signal for a given

DC stimulation was determined using Wilcoxon statistical test

(Figure S1B). Hence, standard DC perturbators induced specific

patterns of Th stimuli.

Defining the Spectrum of DC Communication States
Next we aimed to assess the spectrum of DC communication

states, as defined by their expression pattern of communication

signals, across the 82 DC conditions. We computed the mean

expression of biological replicates for each DC-derived Th stim-

ulusandperformedunsupervisedhierarchical clustering to identify

classes of the most similar conditions (C1–C82, y axis) and DC-

derived Th stimuli (x axis) (Figure 2A). This revealed five groups

of DC conditions (Figure 2B). Each of the four standard DC condi-

tions (Figure 1D) belonged to a different group (Figure 2A).

Group 1 was defined by high expression of adhesion mole-

cules such as CD18, ICAM-2, ICAM-3, and CD29 and low levels
Cell 179, 432–447, October 3, 2019 433
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Figure 1. Variability and Specificity of DC Communication Signals

(A) Experimental strategy.

(B) Raw expression values of the 36 DC communication signals (n = 428 data points).

(C) Statistical descriptors of the 36 DC communication signals: expression range (logmagnitude), percentage of positive observations among the 428 datapoints,

and coefficient of variation.

(D) Average expression values and SD for the four indicated DC signals for MoDCs.

434 Cell 179, 432–447, October 3, 2019



BA

C D

G
roup 1

G
roup 2

G
roup 3

G
roup 4

G
roup 5

IC
O

SL
C

D
10

0
IL

-2
8

C
D

11
a

VI
ST

A
IC

A
M

-2
Ja

gg
ed

-2
4-

1B
B

L
SL

A
M

F3
C

D
29

B
7H

3
G

al
ec

tin
-3

SL
A

M
F5

C
D

18
IC

A
M

-3
C

D
58

PD
L1

C
D

40
C

D
54

C
D

80
PD

L2
IL

-1
2p

70
N

ec
tin

-2
H

LA
-D

R
C

D
83

C
D

86
PV

R
IL

-2
3

IL
-1

0
IL

-1
IL

-6
TN

F-
C

D
70

LI
G

H
T

O
X4

0L
C

D
30

L

μx − σx

μx

μx + σx

μx − σx

μx

μx + σx

μx − σx

μx

μx + σx

μx − σx

μx

μx + σx

μx − σx

μx

μx + σx

Ward distance based on pearson metrics

82
 d

is
tin

ct
 D

C
 C

on
di

tio
ns

 (C
1 

to
 C

82
)

36 DC protein signals

W
ar

d 
di

st
an

ce
 b

as
ed

 o
n 

pe
ar

so
n 

m
et

ric
s

IC
O

S
L

C
D

10
0

IL
-2

8
C

D
11

a
V

IS
TA

IC
A

M
-2

Ja
g

g
ed

-2
4-

1B
B

L
S

L
A

M
F

3
C

D
29

B
7H

3
G

al
ec

ti
n

-3
S

L
A

M
F

5
C

D
18

IC
A

M
-3

C
D

58
P

D
L

1
C

D
40

C
D

54
C

D
80

P
D

L
2

IL
-1

2p
70

N
ec

ti
n

-2
H

L
A

-D
R

C
D

83
C

D
86

P
V

R
IL

-2
3

IL
-1

0
IL

-1
IL

-6
T

N
F-

C
D

70
L

IG
H

T
O

X
40

L
C

D
30

L

C81
C79
C77
C75
C73
C71
C69
C67
C65
C63
C61
C59
C57
C55
C53
C51
C49
C47
C45
C43
C41
C39
C37
C35
C33
C31
C29
C27
C25
C23
C21
C19
C17
C15
C13
C11
C9
C7
C5
C3
C1

C82
C80
C78
C76
C74
C72
C70
C68
C66
C64
C62
C60
C58
C56
C54
C52
C50
C48
C46
C44
C42
C40
C38
C36
C34
C32
C30
C28
C26
C24
C22
C20
C18
C16
C14
C12
C10
C8
C6
C4
C2

Expression Value

−1 0 0.5 1 1.5−0.5

LPS (100ng/mL)
Zym (10μg/mL)
Flu (1X)

Medium

0
2000
4000
6000
8000 PDL1

10000

20000
30000

CD86

C47 C48 C47 C48 C47 C48 C47 C48

***

0
10
20
30
40

IL-1
**

0

100

200

300 CD70

0
500

1000
1500
2000

OX40L

0
100
200
300
400
500 IL-12p70

10000
20000
30000
40000

CD86

C61 C62 C61 C62 C61 C62 C61 C62

1000
2000
3000
4000

CD80

0

100

200

IL-23

5000
10000
15000
20000

CD86

0

1000

2000

IL-6

C32 C33 C32 C33 C32 C33 C32 C33

*

* **

0
500

1000
1500
2000

4-1BBL
*

Best number of groups 
by gaussian mixture model

−6000

−3000

0

�

�
�

�
� � � � � �

� �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

�
�

�
�

�
�

�

�

�

�

�

�

�

�

�

�

0 20 40 60 80
Number of groups 

B
IC

 v
al

ue

Figure 2. The Diversity of DC States Is

Defined byUnique Combinations of Commu-

nication Molecules

(A) Heatmap showing expression values of each 36

DC-derived signal, performed with hierarchical

clustering on Pearson metrics for the DC signals

and Euclidian distances for the 82 DC conditions.

(B) Expression profiles (mean and SD) of the 36

communication molecules within the five groups of

DC conditions, defined by hierarchical clustering.

Expression data were logged and scaled so m rep-

resents the mean and s the SD of the expression of

a given DC signal across the whole dataset.

(C) Boxplot of selected DC signals for pairs of

stimulatory conditions defined as being the most

correlatedwithin our dataset by Pearson correlation

(t test).

(D) Best number of groups by Gaussian mixture

model, determined using the 428 points of the

36 DC parameters.
of co-stimulatory molecules and cytokines with the exception of

high IL-28a. Group 2 showed low expression for most DC-

derived Th stimuli but high levels of integrins, VISTA and B7H3,

suggesting a capacity to interact with T cells and transmit

co-inhibitory signals. Group 3 showed a complementary pattern,

lack of group 1- and group 2-specific molecules, and intermedi-

ate or high levels of co-stimulatory molecules such as CD83,

CD86, HLA-DR, 4-1BBL, and OX40L. This suggested potent

T cell stimulating functions. Group 4 exhibited high levels of mol-

ecules from the B7 and TNF superfamilies, such as CD80, CD86,

PDL1, PDL2, and CD40, but intermediate or low cytokine levels.

In contrast, group 5 showed the highest level of cytokines and

molecules of the B7 and TNF superfamilies (Figure 2B).

Next we sought to analyze intra-cluster heterogeneity. We

selected three pairs of perturbators most closely related

as defined by Euclidian distance (C32 [MoDC HKLM, MOI 1]

and C33 [MoDC HKCA, MOI 1], C47 [bDC LPS, 100 ng/mL] and

C48 [bDC HLKM, MOI 1], and C61 [MoDC R848, 1 mg/mL]
and C62 [MoDC PAM3, 10 mg/mL]) and

compared them regarding expression of

the 36 DC-derived Th stimuli (Figure 2C).

C32 and C33 did not exhibit significant dif-

ferences in CD80 and CD86 expression,

reflecting equal levels of DC activation.

They were statistically different only for

IL-6, with levels ranging from complete

absence in C33 to over 1 ng/mL in

C32 (Figure 2C). In contrast, the pairs

C47/C48 and C61/C62 showed significant

differences for multiple Th stimuli. C47 ex-

pressed significantly more CD86, PDL1,

and IL-1 than C48. On the contrary, C48

expressed higher levels of 4-1BBL. C61

and C62 showed marked differences

in CD70 and IL-12 (higher in C61) and

OX40L (higher in C62) levels. Hence,

each DC condition expressed unique
combinations of DC-derived Th stimuli, suggesting different

communication potential with CD4 T cells.

An unsupervised Gaussian mixture model showed that the

highest Bayesian information criterion (BIC) value corresponded

to 82 groups, confirming that each DC condition induced a

unique profile of the 36 communication molecules (Figure 2D).

Using principal-component analysis (PCA), we showed that

neither the date of the experiment nor the donor batch had ama-

jor effect on clustering (Figure S1C; STAR Methods).

TheHeterogeneityofDC-InducedThCytokineResponses
We characterized the diversity of CD4 T cell output responses,

as assessed by Th cytokine profiles, following co-culture of

naive CD4 T cells with activated DCs across the 82 conditions

described previously. Th cytokines exhibited important varia-

tions across the 428 observations (Figure 3A). Some cytokines,

such as IL-2, TNF-a, GM-CSF, TNF-b, and IL-3, were always

detected (Figure S2A).
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Figure 3. Th Cytokine Responses Mirror the Variability in DC Communication States

(A) Raw expression values of each of the 18 Th-derived parameters (n = 418 data points).

(B) Average expression values and SD for all Th-derived signals under the MoDC conditions medium, LPS, zymosan, and flu.

(C) Heatmap of expression values of each 18 Th parameters, performedwith hierarchical clustering on Pearsonmetrics for the DC signals and Euclidian distances

for the T cell conditions.

(D) Boxplot of Th signals for pairs of conditions selected as being the most correlated within our dataset by Pearson correlation (t test).

(E) Best number of groups by Gaussian mixture model, determined only using the 428 points of the 18 Th parameters.
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To identify Th subset signatures, we compared cytokine

expression under our four standard conditions: medium (negative

control), LPS, zymosan, and flu. The Th17 cytokines IL-17A and

IL-17F were induced predominantly in zymosan MoDCs. LPS

MoDCs induced mixed Th1, Th2, and Th9 responses character-

ized by high IFN-g, IL-13, IL-3, and IL-9 compared with medium.

Flu MoDCs induced the Th2 cytokines IL-4, IL-5, and IL-31 (Fig-

ures 3B and S2B). These results indicate that, under the LPS,

zymosan, and flu conditions, each DC state induced a distinct

set of Th cytokine responses corresponding to prototypical Th

signatures or mixed Th profiles.

Th Cytokine Responses Mirror the Variability in DC
Communication States
We asked whether Th cytokine responses would reveal distinct

patterns or a continuum of responses mirroring each of the DC

communication states (Figure 2A). We performed hierarchical

Pearson clustering on our 18 distinct Th-derived variables across

the entire 82 DC-activating conditions (Figure 3C). This revealed

6 distinct groups, although intra-group heterogeneity was

evident in almost all groups. Interestingly, DC perturbation con-

ditions (C1–C82) did not appear in the same order compared

with DC communication signal clustering (Figure 2A), indicating

that closely related patterns of DC-derived Th stimuli did

not necessarily induce the closest patterns in Th cytokine

responses.

Group 1 was dominated by production of IL-10, IL-22, IL-5,

GM-CSF, IL-3, IL-31, IL-13, and IL-4 (Figure S2C). Group 2

was the most heterogeneous and included the inflammatory cy-

tokines TNF-a and IL-6 co-expressed with variable levels of the

Th1 (IFN-g) and Th2 (IL-4 and IL-13) cytokines (Figure S2C).

Group 3 expressed IL-21, IFN-g, and IL-17F but no or low

IL-17A, suggesting the possibility of differential regulatory

mechanisms (Figure S2C). Group 4 was dominated by the

Th17 cytokines IL-17A and IL-17F, group 5 by IL-22, and group

6 by IL-2. Distinct sets of DC perturbation conditions and, hence,

patterns of DC-derived communication molecules were associ-

atedwith each of these groups (Figure 3C). This was the first sug-

gestion of specific rules underlying input-output relationships in

DC-Th communication.

Because of intra-group heterogeneity, we askedwhethermost

correlated conditions within the same cluster would differ from

each other (Figure 3D). C12 and C33were associated to different

levels in IL-17F, whereas C42 and C47 were different in IL-2 and

C46 and C49 were different in IL-6 and GM-CSF levels (Fig-

ure 3D). As for the DC dataset, we found that 82 was the best

number of groups in our Th-derived dataset, based on a

Gaussianmixture model (Figure 3E). This suggested that a single

DC profile of communication molecules would induce a unique

set of Th cytokines.

A Data-Driven Lasso Penalized Regression Model
Predicts Th Cytokine Responses from Combinations of
DC-Derived Th Stimuli
Having generated distinct patterns of DC-derived communica-

tion signals associated with a diversity of induced CD4 T cell

cytokine responses, the question of their relationship appeared

to be critical to decipher DC-Th communication. Given the
complexity of the dataset and the lack of clear hypotheses

concerning the majority of DC-derived Th stimuli, we applied

an unsupervised mathematical modeling strategy (Figure 4A).

The MultiVarSel strategy with stability selection performed

similarly as the internal positive control and better than other

methodologies tested (Figure S3A; STAR Methods). Therefore,

we applied MultiVarSel to the modeling of our experimental

data (Figure 4A). This methodology takes into account the

dependencies that may exist among Th cell cytokines and com-

bines Lasso criterion and stability selection to select associa-

tions between DC-derived signals (inputs) and Th cytokines (out-

puts) (STAR Methods).

Our multivariate model identified a large number of significant

positive (red) and negative (blue) associations of the 36 DC-

derived Th stimuli with the 17 Th-derived cytokines (Figure 4B).

White squares represent the absence of significant association

(Figure 4B). The frequency of selection obtained for each

input-output association is provided in Figure S3B.

Our mathematical model revealed (1) the effect of each DC

communication signal on Th output responses and (2) the critical

regulators for each Th cytokine. For example, negative regula-

tors of IL-10 were OX40L, 4-1BBL, IL-12, TNF-a, CD58, VISTA,

Galectin-3, CD80, CD29, IL-1, ICAM-3, SLAMF3, IL-28a, and

CD83, and positive regulators were Jagged-2, PDL1, IL-10,

CD11a, HLA-DR, ICOSL, CD100, CD30L, CD18, ICAM-2, and

CD86 (Figure 4B). Hence, the model can predict IL-10 produc-

tion by responding Th cells for any DC, given the expression level

of thesemolecules. It allows simulating loss or gain of function of

an input. Similar insight can be obtained for each of the 17 Th

cytokine responses, which may be explained by a combination

of DC-derived communication signals.

We used computational cross-validation to evaluate the error

of prediction of our model (Figure 4C). For all Th cytokines, the

multivariate outperformed the best univariate model (Fig-

ure S3C). We ranked Th cytokines based on their prediction

errors; the Th variables best explained by our model were IL-6,

IL-17F, Exp Fold, and IL-3 (Figure 4C).

To address DC type specificity in model performance, we

calculated the cross-validation error for each Th output of the

MoDC and bDC dataset, respectively. Our model predicted

equally well the majority of the outputs for the two DC types (Fig-

ure S3D). For a few outputs, mostly IL-22 and TNF-b, the model

was more error prone in bDCs than MoDCs (Figure S3D). Inter-

estingly, a higher prediction error was found for TNF-b in 5 of

118 observations (Figure S3E), where TNF-b levels were very

high (range, 6.7–22.2). This suggested that a TNF-b-promoting

input signal might be involved in those 5 cases but not included

in our model. For IL-22, more observations had a higher predic-

tion error in bDCs compared with MoDCs, but the prediction

error range and distributions were similar, suggesting that the

input-output relationship was conserved (Figure S3E).

We performed hierarchical clustering for both DC and T cell-

derived variables to identify co-regulations between Th outputs.

We retrieved relevant clusters of Th cytokines belonging classi-

cally to the same Th subset (Figure 4B). The Th2-related cyto-

kines IL-13, IL-31, IL-5, IL-4, IL-10, and GM-CSF were found in

the same cluster, suggesting that their induction would be

controlled by similar mechanisms. IL-17A and IL-17F were also
Cell 179, 432–447, October 3, 2019 437
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in the same cluster, implying that the model associated them

with closely related DC communication signals (Figure 4B). Sur-

prisingly, ourmodel closely related IL-9 expression to IL-17A and

IL-17F, suggesting common regulators. It also clustered IL-22

closer to the Th2 than to the Th17 cytokines. IL-21 was associ-

ated with the Th1 cytokines IL-2 and IFN-g (Figure 4B).

TheMultivariate DC-ThModel Reveals Novel Regulators
of Th Cytokine Responses
We systematically compared our model results with the literature

as a knowledge-based validation but also novelty assessment.

We screened 178 relevant articles (STAR Methods) and ex-

tracted information regarding specific molecular control of a

given Th cytokine by DC-derived signals measured in our model

(Table S3). We computed a validation score based on the num-

ber of articles identifying the same associations than our model

(STAR Methods). IL-12 ranked as the top DC communication

signal for which our model predictions globally recapitulated

existing knowledge (8 of 13 predicted associations). Among

other known associations, IL-23 was positively associated with

IL-17A and IL-17F, IL-10 was positively associated with IL-10

and negatively with IFN-g, and CD40 was positively associated

with IFN-g.

However, the model also predicted 290 associations that were

not described previously. Putative novel regulatorswere identified

for all Th outputs (Table S4). The robustness of each prediction

could be estimated by the value of the coefficient and by the fre-

quency of detection of the association (Table S4). Examples of

high scores were B7H3 and CD83 association with IL-4, 4-1BBL

association with IL-9, ICOSL association with IL-13, and OX40L

negative association with IL-22 (Table S4). Overall, literature

knowledge was retrieved for 80 distinct input-output relationships

presented in our model (Figure 4B); 56were in agreement with our

model, representing a global literature validation score of 70%.

Systematic and Independent Experimental Validation of
Model’s Predictions
We performed systematic experimental validation by selecting a

subset of target inputs and systematically measuring the Th out-

puts selected by our model. We assessed the novelty of each

validated prediction (Table S3).

First we addressed systematic validations of model predictions

byblockingexperiments (Figure5A).Weperformeddouble in silico

knockout for CD80 and CD86 under the three conditions—LPS

(100 ng/mL), flu (13), and zymosan (10 mg/mL) MoDCs—in which

CD80andCD86were highly expressed and predicted an effect on

15 distinct Th outputs (Figure 5B), 11 of which were successfully
Figure 5. Independent and Systematic Experimental Validation of the M

(A) CD28 blocking experimental design in DC-T co-culture.

(B) Comparison of the predicted versus observed fold change following CD28 bl

(C) Experimental scheme of the ‘‘adding’’ validation procedure used in (D)–(F).

(D) DC-free validation experiment studying the effect of adding IL-1b in Th0, Th2, a

(E) DC-free validation experiment studying the effect of adding ICOS in Th0 and Th

soluble anti-CD28; n = 6 donors.

(F) IL-12 validation experiments in the DC-free system. Naive T cells were stimul

(G) Validation of IL-12 predictions regarding IL-3 and IL-9. bDCs were cultured w

For (B) and (D)–(G), each panel shows the mean and SD of cytokine concentratio

440 Cell 179, 432–447, October 3, 2019
experimentally validated (STAR Methods). The positive role of

CD80 and CD86 on IL-3 and IL-31, to our knowledge, have not

been described elsewhere. The predictions we failed to validate

were for IL-4, IL-5, IL-10, and TNF-a (Figure S4A), all predicted

to be decreased by CD80/CD86.

Then we validated the effects of three additional inputs: IL-1,

ICOSL, and IL-12 used as exogenous factors (Figure 5C). First

we gave the selected input together with anti CD3/CD28 signals

(Th0) and systematically measured all Th outputs predicted by

the model to be influenced by that input. In the absence of any

effect, we gave the selected input under a Th2 (IL-4) or Th17

(IL-6, IL-1b, IL-23, and TGF-b) condition to detect additional syn-

ergistic or inhibitory effects required to validate the predicted

effect. For example, it is not possible to validate the inhibition

of a Th2 cytokine without significant production of this cytokine

at baseline.

We focused on the ten predictions made by our model for IL-1

(Figure 5D). By adding IL-1b to the Th0 condition, wewere able to

detect significant upregulation of IL-6 and IL-17F and significant

downregulation of IL-10 and IL-13. IL-10 downregulation and

IL-6 upregulation were also significant in the Th2 context (Fig-

ure S4B). Under a Th2 condition, we validated significant

upregulation of TNF-a and downregulation of IL-9 by IL-1b (Fig-

ure S4B), not seen in Th0 (Figure S4B). Under a Th17 condition,

we observed a positive effect of IL-1b on IL-17A. We could not

validate the predictions regarding IL-21, IL-31, and IL-22 (Fig-

ure S4B). In total, 7 of 10 predicted effects of IL-1 were validated.

Interestingly, the positive role of IL-1b on induction of IL-6 by Th

cells was not known (Table S3) and may suggest new biology

and amplification loops in an inflammatory context.

We used a similar strategy to validate predictions regarding

ICOSL using an anti-ICOS agonistic antibody. Overall, we vali-

dated 10 of 16 predictions (Figure 5E and S4C; STAR Methods).

Interestingly, five of the 10 validated predictions were novel

(Table S3; IL-5, IL-13, IL-3, GM-CSF, and IL-22), suggesting

common pathways to induce IL-22 and Th2 responses.

Finally, we experimentally tested the predictions regarding

IL-12 (Figure 5F). Adding IL-12 to the Th0 condition validated

an induction of IFN-g, IL-21, Exp Fold, and TFN-b. We also vali-

dated the inhibitory role of IL-12 on Th2 cytokine (IL-4, IL-5, and

IL-13), IL-6, and IL-22 production. Using the Th2 condition, we

further validated the inhibitory role of IL-12 on IL-10 and IL-31.

The effects of IL-12 on TNF-b, IL-31, and IL-6 have not been

described previously (Table S3).

Because our anti-CD3/CD28 system did not allow validating

IL-12 effects on IL-2, IL-17F, IL-3, and IL-9 (Figure S4D), we

wondered whether DC-dependent factors could affect the role
odel’s Prediction

ocking; n = 6 donors.

nd Th17. Naive T cells were stimulated by anti-CD3/CD28 beads; n = 6 donors.

17. Naive T cells were stimulated by coated anti-CD3 and ICOS antibodies and

ated by anti-CD3/CD28 beads under Th0 and Th2 conditions; n = 8 donors.

ith naive CD4 T cells. IL-12 at 10 ng/mL was added for 6 days; n = 6 donors.

n, measured on restimulated Th supernatants (Wilcoxon test).



of IL-12 on these cytokines.We selected DC conditions with very

low production of IL-12 (C51 and C55; Figure 2A) and performed

a co-culture with naive T cells, adding or not adding IL-12. As a

positive control, IL-12 was able to induce IFN-g in both zymosan

andHKSA conditions (Figure S4E).We did not validate the role of

IL-12 on IL-2 or IL-17F regulation (data not shown). However, we

validated that IL-3 was induced by IL-12 in both zymosan DCs

(C51) and HKSA DCs (C54) (Figure 5G), whereas IL-9 was signif-

icantly upregulated only in HKSA DCs. Overall, we were able to

experimentally validate 13 of 15 predictions regarding IL-12.

Our systematic strategy established a validated prediction of

the input-output relationship in 41 of 56 cases (73.2%), 13 repre-

senting newmechanisms identified by themodel. This number is

similar to or higher than the computational cross-validation (Fig-

ure 4C). Predictions with higher stability selection frequencies

were more validated than those with low stability selection (Fig-

ure S4F). However, the value of the model’s coefficients was not

statistically different between the two groups (Figure S4F), indi-

cating that the model efficiently captured associations with low

coefficient values.

Although IL-12 was the input best explained by our model, we

could not validate the predicted association between IL-12 and

IL-17F (Figure S4D), neither in the literature nor in our systematic

experimental validation. Previous studies have shown either no

effect (Volpe et al., 2008) or a negative effect (Acosta-Rodriguez

et al., 2007) of IL-12 on Th17 differentiation. We hypothesized

that context-dependent effects may lead to new functions of

IL-12, not accomplished by IL-12 as a single agent.

A Context-Dependent Model Reveals a Role of IL-12 in
Th17 Differentiation
We designed a strategy to capture context-dependent effects of

one input on any given output by integrating new composite vari-

ables into the model (Figure 6A). These new input variables were

based on the co-occurrence of a given input with other DC-

derived communication signals (i.e., contexts). They adopted

the value of the given input (for instance, IL-12) in each observa-

tion where the co-expressed DC signal was present, and they

took a zero value when the co-signal was absent. We could

derive 455 context-dependent variables.

The model including all context-dependent variables per-

formed less well (higher error of prediction) than our classical

MultiVarSel strategy (Figure S5A), most likely because of overfit-

ting issues dependent on the dataset size, with a number of input

variables exceeding the number of data points used to fit the

model. Therefore, we derived 36 models, each one integrating

the context dependencies of one input (Table S5). For each of

thesemodels, we reported the coefficient and the stability selec-

tion frequencies of each input (Table S5). To globally estimate the

influence of context dependencies within our data, we quantified

the number of times an input variable was selected, either

‘‘alone’’ or ‘‘with’’ another one. We derived percentages of

context dependencies and represented the results either per

input (Figure S5B) or per output (Figure S5C). The inputs most

likely to present ‘‘context-dependent’’ functions were PDL1

and SLAMF3, whereas CD11a and CD70 were mostly context-

independent (Figure S5B). When analyzing the outputs, the

models revealed that all cytokines could be regulated by
context-dependent mechanisms with relatively similar percent-

ages (range, 0.13–0.22) (Figure S5C).

We used this strategy to explain the role of IL-12 in the control of

Th17 differentiation through identification of context-dependent

effects. We found that adding context-dependent variables for

IL-12 improved the model predictions for IL-17F and performed

equallywell for IL-17A (Figure6B).We then focusedonDC-derived

signals that were kept significant by the model and observed

distinctassociationsof thenew IL-12context-dependentvariables

with IL-17A and IL-17F (Figure 6C), including some differentially

associated with IL-17A and IL-17F, respectively. Among various

contexts, we found that IL-12 in the context of IL-1, ICAM-2, or

Jagged-2 was associated with IL-17F, whereas IL-12 in the

context of CD70, IL-23, or LIGHT was associated with IL-17A.

As a first level of in silico validation, we selected a DC condition

under which IL-12 was co-expressed with many of these con-

texts, and DC-derived signals induced IL-17A and IL-17F by

responder Th cells. Zymosan (10 mg/mL) onMoDCs fulfilled these

criteria (Figures 1D and 3C). To study the specific effects of IL-12

in the context of all other DC communication signals induced by

zymosan, we performed in silico IL-12 knockout in the IL-12

context-dependent model. We compared predicted values for

IL-17A and IL-17F when IL-12 was kept or not kept in the model

(Figure 6D). In silico knockout of IL-12 diminished the production

of both IL-17A and IL-17F under the zymosan (10 mg/mL) condi-

tion. As experimental validation, we performed independent

DC/T cell co-culture experiments using MoDCs treated with

10 mg/mL zymosan in the presence and absence of IL-12-neutral-

izing antibody (Figure 6E). Blocking IL-12 significantly decreased

the production of IL-17A and IL-17F, as predicted (Figure 6E),

and inhibited IFN-g production (Figure S5D). The samemodel pre-

dicted no effect of blocking IL-12 in Curdlan MoDCs (Figure S5E),

which we validated experimentally (Figure S5F).

Synergistic Interaction between IL-12 and IL-1 Explains
Induction of IL-17F without IL-17A
Our model predicted distinct roles of IL-12 on IL-17A and IL-17F

production depending on the context in which IL-12 is expressed.

Interestingly, IL-12, IL-1, and CD80 were the top variables almost

systematically selected by the model to explain the differences

between IL-17A and IL-17F (Figure 7A). This corroborated the re-

sults in Figure 6C, where we found that IL-12 in the context of IL-1

was associatedwith IL-17Fbut not IL-17A. Themodel estimate for

a stability selection of less than 0.8 indicated that IL-12, IL-1, and

CD80 were positive contributors to the differences between

IL-17A and IL-17F (Figure S6A). Consequently, we hypothesized

that the combination of IL-12 with IL-1 would induce IL-17F inde-

pendent of IL-17A.

To experimentally validate our hypothesis, we used a DC-free

Th polarization assay, allowing us to specifically study the inter-

action between IL-12 and IL-1 regardless of any other molecular

context. Naive CD4 T cells were polyclonally activated with anti-

CD3/CD28 beads and put in distinct cytokine treatments: Th0

(no cytokine) and Th2 (IL-4) as negative controls; Th17

(IL-1b+IL-23+IL-6+TGF-b) as a positive control, IL-12, IL-1b,

and IL-12+IL-1b. IL-12 alone induced IFN-g and IL-21 and in-

hibited Th2-related cytokines, as expected (Figure S6B). IL-12

alone induced neither IL-17F nor IL-17A, but combining IL-12
Cell 179, 432–447, October 3, 2019 441
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2. 12 variables created:

     IL12_with_Inputj
(i) = 

3. Linear Model (O = IB + E)

 I: 36 full inputs and 12 «IL-12_with» variables
 O: 2 outputs IL-17A and IL-17F

4. Variable Selection:

 MultiVarSel
 Stability Selection

5. Display coefficients (treshold = 0.6, Figure 6C)

0 if Inputj
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IL-12j otherwise{
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(1)     if Ij
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Figure 6. A Context-Dependent Model Reveals a Role of IL-12 in Th17 Differentiation

(A) Context-dependent modeling and application to IL-12. I, input; O, output.

(B) Error of prediction values obtained by 10-fold cross-validation for IL-17A and IL-17F, comparing the best univariate model (gray), MultiVarSel (yellow), and

MultiVarSel with context dependencies (blue).

(C) Heatmap of the model’s coefficient value of the context-dependent multivariate model explaining IL-17A and IL-17F.

(D) Model predictions regarding IL-12 in silico knockout (KO) under the zymosanMoDC condition for IL-17A and IL-17F values (blue) compared with experimental

values in the presence of IL-12 (yellow); paired t test.

(E) Concentrations of IL-17A and IL-17F produced by Th cells after differentiation with zymosan MoDCs in the presence of anti-IL-12 neutralizing antibody or a

matched isotype; n = 6 donors, paired t test.
with IL-1b dramatically induced IL-17F at levels comparable with

the positive control, without a detectable amount of IL-17A,

which fully validated the model predictions (Figure 7B).
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This effect was specific to the IL-12+IL-1b combination IL-6,

IL-23, or TGF-b alone or combined with IL-12 could not induce

IL-17F expression (Figure S6C). The exact same pattern of Th
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Figure 7. Synergistic Interaction of IL-12 and IL-1 Promotes IL-17F without IL-17A

(A) Stability selection frequencies of the different DC signals by a multivariate model, explaining the difference between IL-17F and IL-17A.

(B) Concentration of cytokines measured on restimulated Th supernatants. Naive CD4 T cells were differentiated for 5 days with anti-CD3/CD28 beads under the

indicated conditions; n = 6 donors, paired t test.

(C) The same experimental design as in (B), with conditions as annotated; n = 6 donors, Wilcoxon test.

(D) Coated anti-CD2 and anti-CD3 together with soluble anti-CD28 were given for 5 days to naive CD4 T cells under Th0 or Th17 conditions. Cytokine

concentrations were measured after 24-h restimulation on day 5. Mean and SD are shown; n = 8, Wilcoxon test.

(legend continued on next page)
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cytokine expression was obtained by combining IL-1a or IL-1b

with IL-12, which fit model predictions because those two vari-

ables were highly correlated (Figure S6D). The capacity of

IL-12+IL-1b to induce IL-17F was resistant to the presence of

other Th differentiation factors, such as IL-4 (Figure S6E). Using

CellTrace Violet (CTV; Figure S6F), we could show that the pro-

duction of IL-17F could not be attributed to the distinct prolifer-

ation capacity of Th cells under the IL-12+IL-1b condition.

Next we questioned whether Th cells generated under the

IL-12+IL-1b condition would express transcription factors clas-

sically associated with Th17 differentiation. We measured 63

RNA transcripts by qPCR under Th0, Th2, IL-1b, IL-12,

IL-12+IL-1b, and Th17 conditions (Table S6). The 63 genes

included master regulators of the Th1 and Th2 subsets, such

as T-bet and GATA3, respectively, and Th17 regulators, such

as RORc, STAT3, BATF, and SATB1 (Ciofani et al., 2012).

IL-17A and IL-17F regulation at the mRNA level mirrored the pro-

tein level (Figure S6H). IL-12+IL-1b induced significantly more

RORc, BATF, and Bcl6 than IL-12 or IL-1b alone (Figure S6H),

which could explain the induction of IL-17F and IL-21. Still, the

levels of RORc and Bcl6 were lower in IL-12+IL-1b than under

the Th17 condition (Figure S6H). T-bet was highly induced in

IL-12+IL-1b in comparison with the IL-12 or Th17 conditions,

indicating that Th1 differentiation was maintained and that

T-bet did not inhibit IL-17F production. IL-12Rb2, a Th1 marker,

was downregulated by IL-1b when added to IL-12, whereas

IL-12, IL-12+IL-1b, and Th17 conditions all induced the IL-23

receptor (Figure S6H). SATB1 was specifically upregulated in

IL-12+IL-1b in comparison with Th17 or IL-1b alone (Figure S6H),

suggesting that it could play a role in the specific upregulation

of IL-17F.

To globally assess the expression of the various Th lineage-

specific factors, across IL-12- and IL-1-containing conditions,

we performed a principal-component analysis (PCA) including

all 63 mRNA variables (Figure S7A). Cells from the IL-12+IL-1b

condition had an intermediate expression pattern between the

IL-12 (Th1) and Th17 conditions. By decomposing the PCA

space into vectors for each variable, we found that IL-17F,

IL-23R, ICOS, and T-bet projected predominantly along the

IL-12+IL-1b condition (Figure S7B), again pointing to mixed

Th1/Th17 features.

We then addressed the link between IL-12 and IL-17A in

various contexts. IL-12 with IL-23 was predicted to induce

IL-17A but not IL-17F (Figure 6C). In a DC-free Th polarization

assay, we used IL-12, IL-23, or IL-12+IL-23 and found that

none of these conditions induced IL-17A (Figure 7C). We hypoth-

esized that a third input could explain the positive link between

‘‘IL-12_with_IL-23’’ and IL-17A. Using an unsupervised analysis,

we found IL-1 as a top variable with the highest correlation (Fig-

ure S7C). In addition, IL-12 and IL-17A positive correlation was
(E) Day 5 intracellular FACS analysis of Th cells differentiated as in (B). Dot plots

(F) Quantification of live total CD4 T cells producing either IL-17A or IL-17F; n =

(G) Representative donor of CD4 memory T cells with intracellular FACS staining

(H) Venn Diagrams of IL-17F+/IL17A� Th cells co-producing IL-22, IFN-g, and IL-

confidence interval, n = 6 donors.

(I) Venn Diagrams of IL-17F+/IL17A� Th cells co-producing IL-22, IFN-g, and IL-

percentage of 6 donors with confidence interval.

444 Cell 179, 432–447, October 3, 2019
significant specifically in the group of data points where IL-23

and IL-1 were expressed (Figures S7D and S7E) and was lost

when only IL-1 or IL-23 was expressed with IL-12 (Figure S7D).

Therefore, we tested whether IL-12+IL-23 would induce IL-17A

in the presence of IL-1b. We validated a significant induction of

IL-17A with no effect on IL-17F when IL-12 and IL-23 were given

in the presence of IL-1b comparedwith IL-12 or IL-23 (Figure 7C).

We measured IL-17A and IL-17F by qPCR and retrieved the

same induction pattern (Figure S7F). Last, we could show that

RORc was higher in IL-12+IL-23+IL-1b than in IL-12+IL-1b

(Figure S7F).

Finally, we observed that our modeling strategy always identi-

fied CD58 as a main Th17 inducer because it positively affected

both IL-17A and IL-17F (Figures 4B and 6C), an association that

we had not seen during our systematic literature review (Fig-

ure 4D; Table S3). To test this hypothesis, we used an agonist

anti-CD2 antibody that mimics the presence of CD58 (STAR

Methods). As predicted, IL-17A and IL-17F were not induced

by anti-CD2 alone under the Th0 condition. However, anti-CD2

significantly induced production of IL-17A and IL-17F under

Th17 conditions (Figure 7D), which was confirmed by intracel-

lular FACS staining (Figures S7H and S7I), with IL-17F upregula-

tion restricted to IL-17A-positive cells (Figure S7I).

To establish the cytokine co-expression profiles of

IL-12+IL-1b-treated Th cells at the single-cell level, we per-

formed intracellular cytokine staining (Figure 7E). We confirmed

that IL-12+IL-1b induced significantly more IL-17F-positive Th

cells without co-production of IL-17A (Figure 7F). In naive CD4

T cells polarized with the Th17 cytokine cocktail (IL-1b, IL-6,

TGF-b, and IL-23) we mainly found two subsets of Th17 cells

producing either IL-17A or IL-17F, with very few cells co-produc-

ing both cytokines. To check for in vivo existence of those IL-17A

and IL-17F single producers, we analyzed the human CD4 T cell

memory compartment by intracellular FACS in healthy donor pe-

ripheral blood mononuclear cells (PBMCs). We could identify a

small fraction of Th cells expressing only IL-17F in the absence

of IL-17A, suggesting that this phenotype constitutes a differen-

tiation endpoint (Figure 7G).

To gain more insight into the functional properties of these

‘‘Th17F’’ cells, we studied their co-production with IL-21,

IFN-g, and IL-22, all relevant to the Th17 and/or IL-12 pathways,

in vitro (Figure S7J) and ex vivo (Figure S7K). Among

IL-17F+IL-17A� cells generatedwith IL-12 and IL-1b, themajority

co-produced IFN-g (41.8%), IL-21 (10.5%), or both (24.1%) (Fig-

ure 7H), reflecting a dominant role of IL-12. IL-17F+/IL-17A�

memory CD4 cells preferentially co-expressed IL-21 (30.3%)

and IL-21 together with IFN-g (17.5%) (Figure 7I), whichmatched

the in vitro differentiated CD4 T cells. In addition, the percentage

of IL-17F+/IL-17A�/IL-22�/IL-21�/IFN-g� cells between in vitro

IL-12+IL-1b stimulation and the ex vivo restimulated memory
show a representative donor.

6 donors, paired t test.

for IL-17A versus IL-17F.

21 of naive CD4 T cells under the IL-12+IL-1b. IL-12+IL; mean percentage and

21 of memory CD4 T cells stimulated for 5 h with PMA and ionomycin; mean



compartment was similar (22.2%), which indirectly supported

that IL-12+IL-1b induced the emergence of IL-17F single

producers.

Taken together, our results demonstrate a synergy between

IL-12 and IL-1 in inducing IL-17F single-producing Th cells with

possible physiopathological relevance.

DISCUSSION

Cell-cell communication may involve several tens of communica-

tion signals functioning concomitantly and possibly interacting

with each other. These signals, in turn, modify many molecular

and functional parameters in target cells. Such complexity cannot

be captured and formalized without an integrated mathematical

modeling approach. Theoretical models of Th cell differentiation

have already been established (Abou-Jaoudé et al., 2015; Naldi

et al., 2010) and include a large number of possible inputs to

T cells. However, they suffer from three limitations: (1) they include

input signals that may be expressed by diverse cell types in

different anatomical locations; (2) they do not recapitulate combi-

nations of input signals in their naturally occurring patterns and

concentrations; and (3) they use prior knowledge to infer input-

output relationships, which does not integrate possible context-

dependencies and interactions. In parallel, data-driven models

have been developed in response to predefined stimuli, such as

Th17 (Yosef et al., 2013) or Th1/Th2 (Antebi et al., 2013), which

do not recapitulate the integration of multiple communication sig-

nals. In our study, we applied an unbiased data-driven approach

specifically designed to model DC-Th communication. Combina-

tions and concentrations of input communication signals were

measured as naturally determined by their intrinsic biological

regulation. Subsequently, the input-output relationships were

learned from the experimental data and integrated into any

underlying context dependency and interaction, even when not

described previously. This maximizes the relevance of the model

and the potential for novel discoveries.

Cells can change state in response to environmental cues, a

concept defined as plasticity (da Silva-Diz et al., 2018; Liu et al.,

2001). Each cell state may be associated with different communi-

cation potential; i.e., different expression patterns of communica-

tion signals (Soumelis et al., 2002; Wang et al., 2014). To broadly

cover the possible DC states, we used various DC-stimulatory

conditions (cytokines, viruses, bacteria, fungi) at various doses

and combinations and across a large number of observations

(>400). This prevented us from biasing our observations toward

certain quantitatively or qualitatively extreme behaviors. After

the model has learned the rules from such an extended range of

observations, we anticipate that it should be able to predict

behaviors in situations not necessarily covered in our original da-

taset, as confirmed in our computational and experimental valida-

tions. This opens possibilities of application in many areas of

immunology, inflammation, and immunotherapy.

RNA sequencing (RNA-seq) has offered a means of capturing

the expression of many communication signals and their recep-

tors to infer cell-cell communication between various cell types

(Vento-Tormo et al., 2018). However, the RNA-to-protein corre-

lation can be rather low (Liu et al., 2016) and varies a lot depend-

ing on the gene (Edfors et al., 2016). Consequently, RNA copies
of a gene cannot be associated with a given functional output,

preventing quantitative mathematical modeling. Functional

response in target cells can only be estimated indirectly through

surrogate activationmarkers, which ismost often not performed.

In our approach, all measurements of communication signals

and output variables were done at the protein level, hence

directly measuring the bioactive communication molecules

with a direct link to a specific response in target cells. This

ensures robustness of the modeling strategy, as evidenced by

our model’s ability to recapitulate most of the known relation-

ships in DC-Th cell communication.

Modeling complex biological behaviors in a quantitativemanner

is challenging. In data-driven models, it relies in large parts on the

choice of explanatory (input) variables, which drive the induction

or regulation of output variables. Here we selected DC-derived

communication molecules through exhaustive literature mining.

The model was able to integrate 36 input and 18 output variables

in a quantitative manner, which makes it a reference in the field.

We have been able to describe patterns of DC communication

molecules in a way that goes beyond the classical view of imma-

ture versus mature DCs (Banchereau and Steinman, 1998; Guer-

monprez et al., 2002). In fact, we showed that almost every DC

stimulatory condition leads to a distinct DC state. This is a first

step in defining general combinatorial rules of DC-derived

communication molecules: co-expressed molecules form the ba-

sis of putative context-dependent effects. Through the large num-

ber of variables handled by the model, we identified 290 novel

associations explainingmajor immunoregulatory cytokines,which

may lead to the discovery of novel functions of known DC mole-

cules and suggest novel therapeutic targets.

Going further into the complexity of communication, we

explored context dependencies of communication signals. In ver-

bal communication, the context may dramatically alter the mean-

ing of an individual word. Currently, there is no systematic way to

search for context dependencies in biological communication. In

our modeling strategy, we devised a method that introduces

context-dependent variables for a givenmolecule. This allows un-

biased identification of context-dependent functions that would

have been missed by classical regression models. For example,

we identified a new function for IL-12 in promoting IL-17F produc-

tion by Th cells, which was completely unexpected based on prior

knowledge (Korn et al., 2009). Identifying such context depen-

dencies before therapeutic targeting of a DC-Th communication

molecule may improve the prediction of its effect.

Given that DC-Th communication is central to a large number of

physiopathological conditions (Keller, 2001), we can foresee mul-

tiple applications for the model. Based on expression pattern of

DCmolecules, themodel can predict the inducedThcytokine pro-

file. Quantitative measurements of DC communication molecules

in a given disease or in an individual patient ex vivo can be used to

simulate the corresponding Th response. Depending on the

outcome, strategies may be devised to re-orient the response

toward a protective or less pathogenic profile, again through

model-based predictions. Alternatively, starting from a Th profile

(cytokine or groups of cytokines), the appropriate molecular tar-

gets can be manipulated through gain- or loss-of-function exper-

iments to amplify or inhibit a given Th cytokine. Last, the model

can help predict the most appropriate vaccine adjuvant to obtain
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protective immunity against somemicrobes or to re-orient a path-

ogenic Th response. For example, all DC molecules positively

associated in the model to Th2 responses are potential targets

to decrease pathogenic Th2 allergic inflammation (Ito et al.,

2005; Nakayama et al., 2017; Soumelis et al., 2002).

Using DC-Th communication as a model, we established a

framework that can now be applied to other types of cell-cell

communication following 5 major steps: (1) systematic perturba-

tion of the ‘‘sender’’ cell to generate a diversity of communication

states; (2) broad, quantitative, and protein-level measurement of

communication molecules relevant to the sender cell; (3) sys-

tematic quantitative assessment of the response in ‘‘receiver’’

or target cells; (4) MultiVarSel modeling of the input-output rela-

tionship, which defines communication rules; (5) in silico and

experimental validation. Currently, we believe that cell type

specificities in expression of communication molecules and in

their function would prevent us from generalizing our DC-Th

model to other cell types. Comparing different quantitative

models of cell-cell communication will ultimately tell us whether

cells speak the same language (i.e., whether they express similar

patterns of communication molecules) and whether the same

communication molecule has the same meaning (function)

when expressed by two different cell types.
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(2002). Antigen presentation and T cell stimulation by dendritic cells. Annu.

Rev. Immunol. 20, 621–667.

Ito, T., Wang, Y.H., Duramad, O., Hori, T., Delespesse, G.J., Watanabe, N.,

Qin, F.X., Yao, Z., Cao, W., and Liu, Y.J. (2005). TSLP-activated dendritic cells

induce an inflammatory T helper type 2 cell response through OX40 ligand.

J. Exp. Med. 202, 1213–1223.

Ivanov, I.I., McKenzie, B.S., Zhou, L., Tadokoro, C.E., Lepelley, A., Lafaille,

J.J., Cua, D.J., and Littman, D.R. (2006). The orphan nuclear receptor ROR-

gammat directs the differentiation program of proinflammatory IL-17+ T helper

cells. Cell 126, 1121–1133.

Keller, R. (2001). Dendritic cells: their significance in health and disease. Immu-

nol. Lett. 78, 113–122.

Kintsch, W., and Mangalath, P. (2011). The construction of meaning. Top.

Cogn. Sci. 3, 346–370.

Korn, T., Bettelli, E., Oukka, M., and Kuchroo, V.K. (2009). IL-17 and Th17

Cells. Annu. Rev. Immunol. 27, 485–517.

Liu, Y.J., Kanzler, H., Soumelis, V., and Gilliet, M. (2001). Dendritic cell lineage,

plasticity and cross-regulation. Nat. Immunol. 2, 585–589.

Liu, Y., Beyer, A., and Aebersold, R. (2016). On the Dependency of Cellular

Protein Levels on mRNA Abundance. Cell 165, 535–550.

Macagno, A., Napolitani, G., Lanzavecchia, A., and Sallusto, F. (2007). Dura-

tion, combination and timing: the signal integration model of dendritic cell acti-

vation. Trends Immunol. 28, 227–233.

Manel, N., Unutmaz, D., and Littman, D.R. (2008). The differentiation of human

T(H)-17 cells requires transforming growth factor-beta and induction of the nu-

clear receptor RORgammat. Nat. Immunol. 9, 641–649.
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KEY RESOURCES TABLE
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Antibodies

FITC Mouse anti-human CD3 (Clone HIT3a) BD Cat# 555339; RRID:AB_395745

FITC Mouse anti-human CD14 (Clone TÜK4) Miltenyi Biotec Cat# 130-080-701; RRID:AB_244303

FITC Mouse anti-human CD16 (Clone NKP15) BD Cat# 335035

FITC Mouse anti-human CD19 (Clone LT19) Miltenyi Biotec Cat# 130-091-328; RRID:AB_244222

APC-Cy7 Mouse anti-human CD11c (Clone Bu15) BioLegend Cat# 337218; RRID:AB_10662746

PE-Cy5 Mouse anti-human CD4 (Clone 13B8.2) Beckman Coulter Cat# A07752

R-PE Mouse anti-human OX40L (Clone ANC10G1) Ancell Cat# 400-050

R-PE Mouse IgG1, k Isotype Control (Clone MOPC31C) Ancell Cat# 278-050

BV711 Mouse anti-human CD54 (Clone HA58) BD Cat# 564078; RRID:AB_2738579

BV711 Mouse IgG1, k Isotype Control (Clone X40) BD Cat# 563044

BV786 Mouse anti-human CD273 (Clone MIH18) BD Cat# 563843; RRID:AB_2738446

BV786 Mouse anti-human CD80 (Clone L307.4) BD Cat# 564159; RRID:AB_2738631

BV786 Mouse IgG1, k Isotype Control (Clone X40) BD Cat# 563330

FITC Mouse anti-human CD70 (Clone Ki-24) BD Cat# 555834; RRID:AB_396157

FITC Mouse IgG3, k Isotype Control (Clone J606) BD Cat# 555578; RRID:AB_395956

Alexa Fluor� 700 Mouse anti-human CD29 (Clone TS2/16) BioLegend Cat# 303020; RRID:AB_2130078

Alexa Fluor� 700 Mouse IgG1, k Isotype Control

(Clone MOPC-21)

BioLegend Cat# 400144

APC Mouse anti-human ICAM-3 (Clone CBR-IC3/1) BioLegend Cat# 330011; RRID:AB_1227570

APC Mouse anti-human Jagged-2 (Clone MHJ2-523) BioLegend Cat# 346906 (Discontinued)

APC Mouse IgG1, k Isotype Control (Clone MOPC-21) BioLegend Cat# 400121; RRID:AB_326443

BV650 Mouse anti-human CD86 (Clone IT2.2) BioLegend Cat# 305428; RRID:AB_2563823

BV650 Mouse IgG2b, k Isotype Control (Clone MPC-11) BioLegend Cat# 400352

BV711 Mouse anti-human HLA-DR (Clone L243) BioLegend Cat# 307644; RRID:AB_2562913

BV711 Mouse IgG2a, k Isotype Control (Clone MOPC-173) BioLegend Cat# 400272

FITC Mouse anti-human CD100 (Clone A8) BioLegend Cat# 328406; RRID:AB_2254362

FITC Mouse IgG1, k Isotype Control (Clone MOPC-21) BioLegend Cat# 400108

FITC Mouse anti-human ICAM-2 (Clone CBR-IC2/2) BioLegend Cat# 328507

FITC Mouse IgG2a, k Isotype Control (Clone MOPC-173) BioLegend Cat# 400209; RRID:AB_1134236

PE Mouse anti-human CD18 (Clone TS1/18) BioLegend Cat# 302107; RRID:AB_314225

PE Mouse anti-human Nectin-2 (Clone TX31) BioLegend Cat# 337410; RRID:AB_2269088

PE Mouse anti-human PVR (Clone SKII.4) BioLegend Cat# 337610; RRID:AB_2174019

PE Mouse IgG1, k Isotype Control (Clone MOPC-21) BioLegend Cat# 400112

PE/Cy7 Mouse anti-human CD40 (Clone 5C3) BioLegend Cat# 334321; RRID:AB_10643414

PE/Cy7 Mouse IgG1, k Isotype Control (Clone MOPC-21) BioLegend Cat# 400126; RRID:AB_326448

PE/Cy5 Mouse anti-human CD58 (Clone TS2/9) BioLegend Cat# 330909; RRID:AB_1227576

PE/Cy5 Mouse IgG1, k Isotype Control (Clone MOPC-21) BioLegend Cat# 400117

PerCP/Cy5.5 Mouse anti-human CD83 (Clone HB15e) BioLegend Cat# 305320; RRID:AB_2076530

PerCP/Cy5.5 Mouse IgG1, k Isotype Control (Clone MOPC-21) BioLegend Cat# 400150

Alexa Fluor� 488 Goat anti-human Galectin-3 R&D Systems Cat# IC1154G; RRID:AB_10890949

Alexa Fluor� 488 Normal Goat IgG R&D Systems Cat# IC108G; RRID:AB_10890944

Alexa Fluor� 700 Mouse anti-human VISTA (Clone 730804) R&D Systems Cat# FAB71261N

Alexa Fluor� 700 Mouse IgG2B Isotype Control (Clone 133303) R&D Systems Cat# IC0041N; RRID:AB_10973174

APC Mouse anti-human SLAMF3 (Clone 249936) R&D Systems Cat# FAB1898A; RRID:AB_2137949
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APC Mouse IgG2A Isotype Control (Clone 20102) R&D Systems Cat# IC003A; RRID:AB_357243

APC Mouse anti-human 4-1BBL (Clone 282220) R&D Systems Cat# FAB2295A; RRID:AB_2207514

APC Mouse anti-human ICOSL (Clone 136726) R&D Systems Cat# FAB165A; RRID:AB_991955

APC Mouse IgG2B Isotype Control (Clone 133303) R&D Systems Cat# IC0041A; RRID:AB_357246

FITC Mouse anti-human B7H3 (Clone 185504) R&D Systems Cat# FAB1027F; RRID:AB_1208024

FITC Mouse IgG1 Isotype Control (Clone 11711) R&D Systems Cat# IC002F

FITC Goat anti-human SLAMF5 R&D Systems Cat# FAB1855F (Discontinued);

RRID:AB_2074764

FITC Normal Goat IgG R&D Systems Cat# IC108F; RRID:AB_10177332

PE Mouse anti-human LIGHT (Clone 115520) R&D Systems Cat# FAB664P; RRID:AB_2240851

PE Mouse IgG1 Isotype Control (Clone 133303) R&D Systems Cat# IC002P; RRID:AB_357242

PE Mouse anti-human CD30L (Clone 116614) R&D Systems Cat# FAB1028P; RRID:AB_2207494

PE Mouse IgG2B Isotype Control (Clone 133303) R&D Systems Cat# IC0041P; RRID:AB_357249

PerCP Mouse anti-human CD11a (Clone CR38) R&D Systems Cat# FAB35951C (Discontinued);

RRID:AB_10892335

PerCP Mouse IgG2A Isotype Control (Clone 20102) R&D Systems Cat# IC003C; RRID:AB_1207937

PerCP-eFluor710 Mouse anti-human PDL1 (Clone MIH1) ThermoFisher Scientific Cat# 46-5983-42; RRID:AB_11041815

PerCP-eFluor710 Mouse IgG1, k Isotype Control (Clone

P3.6.2.8.1)

ThermoFisher Scientific Cat# 46-4714-82; RRID:AB_1834453

Alexa Fluor� 488 Mouse anti-human IL-17A (Clone BL168) BioLegend Cat# 512308; RRID:AB_961386

Alexa Fluor� 488 Mouse IgG1, k Isotype Control (Clone

MOPC-21)

BioLegend Cat# 400134

PE-Cy7 Rat anti-human IL-17F (Clone SHLR17) ThermoFisher Scientific Cat# 25-7169-42; RRID:AB_10853673

PE-Cy7 Rat IgG1, k Isotype Control (Clone eBRG1) ThermoFisher Scientific Cat# 25-4301-82; RRID:AB_470198

PE Mouse anti-human IL-21 (Clone 3A3-N2) BioLegend Cat# 513004; RRID:AB_2249025

PE Mouse IgG1, k Isotype Control (Clone MOPC-21) BioLegend Cat# 400112

eFluor 660 Mouse anti-human IL-22 (Clone 22URTI) ThermoFisher Scientific Cat# 50-7229-42; RRID:AB_10598650

eFluor 660 Mouse IgG1, k Isotype Control (Clone P3.6.2.8.1) ThermoFisher Scientific Cat# 50-4714-82; RRID:AB_10597301

BV605 Mouse anti-human IFN-g (Clone B27) BD Cat# 562974; RRID:AB_2737926

BV605 Mouse IgG1, k Isotype Control (Clone X40) BD Cat# 562652; RRID:AB_2714005

Ultra-LEAF Purified anti-human CD3 Antibody (Clone OKT3) Biolegend Cat# 317347; RRID:AB_2571994

Ultra-LEAF Purified anti-human CD28 Antibody (Clone CD28.2) Biolegend Cat# 302943; RRID:AB_2616667

Mouse IgG1 kappa Isotype Control (Clone P3.6.2.8.1) ThermoFisher Scientific Cat# 14-4714-85; RRID:AB_470112

Human IL12 monoclonal blocking antibody (Clone B-T21) ThermoFisher Scientific Cat# BMS152; RRID:AB_10596494

Mouse IgG1 isotype control R&D Systems Cat# MAB002; RRID:AB_357344

Human CD2 monoclonal blocking antibody (Clone 299808) R&D Systems Cat# MAB18562

Mouse IgG2A isotype control R&D Systems Cat# MAB003; RRID:AB_357345

Anti-human CD28 monoclonal blocking antibody (Clone 9.3) BioXcell Cat# BE0248; RRID:AB_2687729

Anti-Unknown Specificity (Isotype control) Human IgG1,k Absolute Antibody Cat# Ab00178-10.0

Anti-human ICOS monoclonal blocking antibody N/A The agonist ICOS antibody was produced

for research purposes from the sequence

made publicly available by JOUNCE

THERAPEUTICS in the patent US

2016/0304610, INC. The produced antibody

corresponded to clone 37A10S713 with

a human IgG1 isotype.

Biological Samples

Human Healthy blood donors for primary MoDC, bDC, naive

and memory CD4 T cells

Etablissement Français du

Sang (French Blood Bank)

N/A

Human serum Sigma-Aldrich Cat# H4522

(Continued on next page)
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Chemicals, Peptides and Recombinant Proteins

Lymphoprep StemCell Technologies Cat# 07861

RPMI 1640 Medium, GlutaMAX Supplement ThermoFisher Scientific Cat# 61870010

Penicillin-Streptomycin ThermoFisher Scientific Cat# 15140122

Foetal Bovine Serum Research Grade Hyclone/Perbio Cat# CH30160.03

MEM Non-essential Amino Acids Solution (100X) ThermoFisher Scientific Cat# 11140050

Sodium pyruvate (100 mM) ThermoFisher Scientific Cat#11360070

X-VIVO 15 Chemically Defined, Serum-Free Hematopoietic

Cell Medium

Ozyme Cat# BE02-060F

HEPES Buffer ThermoFisher Scientific Cat# 15630056

UltraPure EDTA ThermoFisher Scientific Cat# 15575020

Phorbol 12-myristate 13-acetate Sigma-Aldrich Cat# P8139

Ionomycin calcium salt from Streptomyces conglobatus Sigma-Aldrich Cat# I0634

Brefeldin A Solution 1000X ThermoFisher Scientific Cat# 00-4506-51

Intracellular Fixation & Permeabilization Buffer Set ThermoFisher Scientific Cat# 88-8824-00

DAPI (4’,6-Diamidino-2-Phenylindole, Dihydrochloride) ThermoFisher Scientific Cat# D1306

Zombie NIR Fixable Viability Kit BioLegend Cat# 423105

LIVE/DEAD Fixable Yellow Dead Cell Stain Kit ThermoFisher Scientific Cat# L34959

CellTrace Violet Cell Proliferation Kit, for flow cytometry ThermoFisher Scientific Cat# C34557

Recombinant human IL-1a R&D Systems Cat# 200-LA

Recombinant human IL-1b Peprotech Cat# 200-01B

Recombinant human IL-4 R&D Systems Cat# 204-IL-010

Recombinant human IL-6 Peprotech Cat# 200-06

Recombinant human IL-12p70 R&D Systems Cat# 219-IL

Recombinant human IL-23 R&D Systems Cat# 1290-IL

Recombinant human TGF-b1 Peprotech Cat# 100-21

Recombinant human IL-4 Miltenyi Biotec Cat# 130-093-922

Recombinant human GM-CSF Miltenyi Biotec Cat# 130-093-865

PAM3CSK4 Invivogen Cat# tlrl-pms

Aluminum potassium sulfate Invivogen Cat# tlrl-alk

Heat-killed Staphylococcus aureus Invivogen Cat# tlrl-hksa

Heat-killed Candida albicans Invivogen Cat# tlrl-hkca

Heat-killed Listeria monocytogenes Invivogen Cat# tlrl-hklm

Heat-killed Streptococcus pneumoniae Invivogen Cat# tlrl-hksp

Poly(I:C) High molecular weight Invivogen Tlrl-pic

Curdlan Invivogen Cat# tlrl-curd

Zymosan Sigma-Aldrich Cat# Z4250

LPS-EB Ultrapure Invivogen Cat# tlrl-3pelps

Prostaglandin E2 Sigma-Aldrich Cat# P0409

R848 Invivogen Cat# tlrl-r848

Recombinant Human IFN-b Preprotech Cat# 300-02BC

Influenza A/PR/8/34 (H1N1) Allantoic Fluid Charles River Cat# 10100781

Recombinant human TSLP R&D Systems Cat# 1398-TS

Critical Commercial Assays

EasySep Human Pan-DC Pre-Enrichment Kit StemCell Technologies Cat# 19251

EasySep Human Naive CD4+ T Cell Isolation Kit StemCell Technologies Cat# 19555

CD14 MicroBead human Miltenyi Biotec Cat# 130-050-201

LS columns Miltenyi Biotec Cat# 130-042-401

(Continued on next page)
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Memory CD4+ T Cell Isolation Kit, human Miltenyi Biotec Cat# 130-091-893

Dynabeads� Human T-Activator CD3/CD28 for T Cell

Expansion and Activation

ThermoFisher Scientific Cat# 11131D

Easy 50 EasySep Magnet StemCell Technologies Cat# 18002

Big Easy EasySep Magnet StemCell Technologies Cat# 18001

QuadroMACS Starting Kit (LS) Miltenyi Biotec Cat# 130-091-051

BD Cytometric Bead Array (CBA) Human Soluble Protein

Master Buffer Kit

BD Cat# 558265

BD Cytometric Bead Array (CBA) Human IL-1a Flex Set BD Cat# 560153

BD Cytometric Bead Array (CBA) Human IL-1b Flex Set BD Cat# 558279

BD Cytometric Bead Array (CBA) Human IL-2 Flex Set BD Cat# 558270

BD Cytometric Bead Array (CBA) Human IL-3 Flex Set BD Cat# 558355

BD Cytometric Bead Array (CBA) Human IL-4 Flex Set BD Cat# 558272

BD Cytometric Bead Array (CBA) Human IL-5 Flex Set BD Cat# 558278

BD Cytometric Bead Array (CBA) Human IL-6 Flex Set BD Cat# 558276

BD Cytometric Bead Array (CBA) Human IL-9 Flex Set BD Cat# 558333

BD Cytometric Bead Array (CBA) Human IL-10 Flex Set BD Cat# 558274

BD Cytometric Bead Array (CBA) Human IL-12p70 Flex Set BD Cat# 558283

BD Cytometric Bead Array (CBA) Human IL-13 Flex Set BD Cat# 558450

BD Cytometric Bead Array (CBA) Human IL-17A Flex Set BD Cat# 560383

BD Cytometric Bead Array (CBA) Human IL-17F Flex Set BD Cat# 562151

BD Cytometric Bead Array (CBA) Human GM-CSF Flex Set BD Cat# 558335

BD Cytometric Bead Array (CBA) Human IFN-g Flex Set BD Cat# 558269

BD Cytometric Bead Array (CBA) Human TNF-a Flex Set BD Cat# 558273

MILLIPLEX MAP Human TH17 Magnetic Bead Panel -

Immunology Multiplex Assay IL-21, IL-22, IL-31, TNF-b

Merck Millipore Cat# HTH17MAG-14K

MILLIPLEX MAP Human TH17 Magnetic Bead Panel -

Immunology Multiplex Assay IL-23, IL-28a

Merck Millipore Cat# HTH17MAG-14K

RNeasy Micro Kit (50) QIAGEN Cat# 74004

SuperScript II Reverse Transcriptase ThermoFisher Scientific Cat# 18064-071

Random primers Promega Cat# C1181

Oligo(dT)15 Primer Promega Cat# C1101

RNasin� Ribonuclease Inhibitors Promega Cat# N2515

dNTP Promega Cat# U1240

qPCR MasterMix Plus dTTP Eurogentec Cat# 05-QP2X-03+WOUN

Oligonucleotides

RORC [Hs01076112_m1] ThermoFisher Scientific Cat# 4331182

TBX21 [Hs00203436_m1] ThermoFisher Scientific Cat# 4331182

GATA3 [Hs00231122_m1] ThermoFisher Scientific Cat# 4331182

RORA [Hs00536545_m1] ThermoFisher Scientific Cat# 4331182

FOXP3 [Hs00203958_m1] ThermoFisher Scientific Cat# 4331182

FOXP1 [Hs00212860_m1] ThermoFisher Scientific Cat# 4331182

SH2D1A [Hs00158978_m1] ThermoFisher Scientific Cat# 4331182

PRDM1 [Hs00153357_m1] ThermoFisher Scientific Cat# 4331182

PDCD1 [Hs01550088_m1] ThermoFisher Scientific Cat# 4331182

BTLA [Hs00699198_m1] ThermoFisher Scientific Cat# 4331182

HLX [Hs00172035_m1] ThermoFisher Scientific Cat# 4331182

IRF1 [Hs00971965_m1] ThermoFisher Scientific Cat# 4331182

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

CMIP [Hs00286832_m1] ThermoFisher Scientific Cat# 4331182

MAF [Hs00193519_m1] ThermoFisher Scientific Cat# 4331182

RUNX1 [Hs00231079_m1] ThermoFisher Scientific Cat# 4331182

PU1 / SPI1 [Hs02786711_m1] ThermoFisher Scientific Cat# 4331182

CD200 [Hs01033303_m1] ThermoFisher Scientific Cat# 4331182

CXCL13 [Hs00757930_m1] ThermoFisher Scientific Cat# 4331182

IL-12RB2 [Hs00155486_m1] ThermoFisher Scientific Cat# 4331182

BCL6 [Hs00153368_m1] ThermoFisher Scientific Cat# 4331182

IRF4 [Hs00180031_m1] ThermoFisher Scientific Cat# 4331182

FOSL2 [Hs01050117_m1] ThermoFisher Scientific Cat# 4331182

BATF [Hs00232390_m1] ThermoFisher Scientific Cat# 4331182

KDM6B [Hs00996325_g1] ThermoFisher Scientific Cat# 4331182

NFKBIZ [Hs00230071_m1] ThermoFisher Scientific Cat# 4331182

SATB1 [Hs00962580_m1] ThermoFisher Scientific Cat# 4331182

BCL11B [Hs01102259_m1] ThermoFisher Scientific Cat# 4331182

EOMES [Hs00172872_m1] ThermoFisher Scientific Cat# 4331182

SKI [Hs01057032_m1] ThermoFisher Scientific Cat# 4331182

ATF6 [Hs00232586_m1] ThermoFisher Scientific Cat# 4331182

AES [Hs01081012_m1] ThermoFisher Scientific Cat# 4331182

CREM [Hs01582003_g1] ThermoFisher Scientific Cat# 4331182

DDIT3 [Hs00358796_g1] ThermoFisher Scientific Cat# 4331182

LEF1 [Hs01547250_m1] ThermoFisher Scientific Cat# 4331182

NFATC2 [Hs00905451_m1] ThermoFisher Scientific Cat# 4331182

ETV6 [Hs00231101_m1] ThermoFisher Scientific Cat# 4331182

SIRT2 [Hs01560289_m1] ThermoFisher Scientific Cat# 4331182

USP18 [Hs00276441_m1] ThermoFisher Scientific Cat# 4331182

NFATC1 [Hs00542675_m1] ThermoFisher Scientific Cat# 4331182

NFATC3 [Hs00190046_m1] ThermoFisher Scientific Cat# 4331182

SMAD3 [Hs00969210_m1] ThermoFisher Scientific Cat# 4331182

SMAD2 [Hs00998187_m1] ThermoFisher Scientific Cat# 4331182

SMAD7 [Hs00998193_m1] ThermoFisher Scientific Cat# 4331182

MINA [Hs01031255_m1] ThermoFisher Scientific Cat# 4331182

POUA2F1 [Hs01573369_m1] ThermoFisher Scientific Cat# 4331182

TNFRSF4/OX40 [Hs00937195_g1] ThermoFisher Scientific Cat# 4331182

TNFRSF8/CD30 [Hs00174277_m1] ThermoFisher Scientific Cat# 4331182

TIGIT [Hs00545087_m1] ThermoFisher Scientific Cat# 4331182

CD226/DNAM-1 [Hs00170832_m1] ThermoFisher Scientific Cat# 4331182

CD96 [Hs00976975_m1] ThermoFisher Scientific Cat# 4331182

IL17A [Hs00174383_m1] ThermoFisher Scientific Cat# 4331182

IL17F [Hs00369400_m1] ThermoFisher Scientific Cat# 4331182

STAT3 [Hs00374280_m1] ThermoFisher Scientific Cat# 4331182

ICOS [Hs00359999_m1] ThermoFisher Scientific Cat# 4331182

IL23R [Hs00332759_m1] ThermoFisher Scientific Cat# 4331182

AHR [Hs00169233_m1] ThermoFisher Scientific Cat# 4331182

IL1R2 [Hs01030384_m1] ThermoFisher Scientific Cat# 4331182

CCL20 [Hs01011368_m1] ThermoFisher Scientific Cat# 4331182

IL2RA [Hs00907779_m1] ThermoFisher Scientific Cat# 4331182

IL2RB [Hs01081697_m1] ThermoFisher Scientific Cat# 4331182

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

IL2RG [Hs00953624_m1] ThermoFisher Scientific Cat# 4331182

IL17RA [Hs01064648_m1] ThermoFisher Scientific Cat# 4331182

CCR6 [Hs00171121_m1] ThermoFisher Scientific Cat# 4331182

B2M [Hs99999907_m1] ThermoFisher Scientific Cat# 4331182

RPL34 [Hs00241560_m1] ThermoFisher Scientific Cat# 4331182

Software and Algorithms

GraphPad Prism 6 – Version 6.01 GraphPad https://www.graphpad.com/

FlowJo V10 – Version 10.0.8 FlowJo https://www.flowjo.com

Bioplex Manager Software BioRad https://www.bio-rad.com/en-cn/product/

bio-plex-manager-software-standard-

edition?ID=5846e84e-03a7-4599-a8ae-

7ba5dd2c7684

FCAP Array – Version 3.0 BD http://www.bdbiosciences.com/us/

applications/research/bead-based-

immunoassays/analysis-software/fcap-

array-software-v30/p/652099

R version 3.5.2 The R Foundation https://www.r-project.org/
LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Vassili

Soumelis (vassili.soumelis@curie.fr). This study did not generate new unique reagents.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human subjects
Apheresis blood from healthy human blood donors were obtained from Etablissement Français du Sang (French Blood Establish-

ment) after written informed consent and in conformity with Institut Curie ethical guidelines. Gender identity and age from anonymous

donors were not available, but all donors were between 18 and 70 years old (age limits for blood donation in France).

METHOD DETAILS

PBMCs purification
PBMCs were isolated by centrifugation on a density gradient (Lymphoprep, Proteogenix).

MoDC generation and activation
CD14+ cells were selected from PBMCs using magnetically labeled anti-CD14 Microbeads and MACS LS columns following

manufacturer’s instructions (MiltenyiBiotec). CD14+ cells were then cultured with IL-4 (50 ng/mL) and GM-CSF (10 ng/mL) (Miltenyi-

Biotec) for 5 days in RPMI 1640Medium, GlutaMAX (Life Technologies) with 10%Fetal Calf Serum.Monocyte-derived Dendritic Cells

(MoDC) were activated for 24 hours using one or a combination of perturbators as described in Table S1.

Blood dendritic cells purification
A step of DC pre-enrichment was performed from PBMCs using the EasySep Human Pan-DC Pre-Enrichment kit (StemCell Tech-

nologies). Total DC were sorted on a MoFloAstrios (Beckman Coulter) as Lineage (CD3, CD14, CD16, and CD19)�, CD4+ (Beckman

Coulter), CD11c+ (BD), as described in Alculumbre and Pattarini (2016).

CD4+ T lymphocytes purification
Naive CD4+ T lymphocytes were purified from PBMCs using the EasySep Human Naive CD4+ T Cell Isolation Kit (StemCell Technol-

ogies). Memory CD4+ T cells were purified from PBMCs using the Memory CD4+ T cell isolation Kit (MiltenyiBiotec).

Paired protein measurement in DC/T coculture
After 24 hours DCorMoDC activation with DC stimuli listed in Table S1, culture supernatants were kept for cytokine analysis for IL-23,

IL-28a, IL-1, IL-10, IL-12p70, IL-6, TNF-a, while cells were washed in PBS. Some cells were used for for surface staining of the
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following markers: B7H3, CD30L, 4-1BBL, PDL2, VISTA, CD40, CD54, CD58, ICAM-2, ICAM-3, CD18, CD29, SLAMF5, SLAMF3,

PVR, CD11a, CD100, LIGHT, Nectin-2, Jagged-2, Galectin-3, CD70, CD80, CD83, OX40L, PDL1, CD86, ICOSL and HLA-DR. And

the remaining cells were put in coculture with allogeneic naive CD4 T cells, at a ratio of 1 DC for 5 T cells, in X-VIVO 15 medium

(Lonza). For FACS staining, a single batch of commercially available antibodies was used across the study.After 6 days of coculture,

T cells were washed and live cells were counted at the microscope using trypan blue to calculate Exp Fold. T cells were reseeded at

1x106/mL and restimulated with anti-CD3/CD28 Dynabeads (LifeTechnologies). 24 hours later supernatants were collected to

measure the following T cell cytokines: IL-2, IL-3, IL-4, IL-5, IL-6, IL-9, IL-10, IL-13, IL-17A, IL-17F, IL-21, IL-22, IL-31, GM-CSF,

IFN-g, TNF-a, TNF-b. In each coculture experiment, one single DC donor was coupled to a different single CD4 T cell donor. For

each DC/T cell pair, the measurement of DC derived signals and Th cytokines were performed in parallel, leading to the acquisition

of paired data for the 36 DC derived signals and the 18 T cell parameters measured.

IL-12 blocking experiment
For IL-12 blocking experiment, after 24 hours activation with Zymosan (10mg/mL) or curdlan (10 mg/mL), MoDC were incubated dur-

ing one hour at 37�C in the presence of 20 mg/mL of anti-IL-12p70 blocking antibody or its matched isotype control. Then, naive CD4

T cells were added to the culture. Antibodies were maintained for the duration of the co-culture. After 6 days of coculture cells were

washed and reseeded at 1x106/mL and restimulatedwith anti-CD3/CD28Dynabeads (LifeTechnologies). 24 hours later supernatants

were collected to measure T cell cytokines.

CD28 blocking experiment
For CD28 blocking experiment, MoDC were first activated for 24 hours with Flu (1X), LPS (100ng/mL) or Zymosan (10 mg/mL). Then,

activated DC were cocultured with allogeneic naive CD4 T cells in the presence of 5 mg/mL anti-CD28 blocking antibody or its

matched isotype control (Figure 5A). Antibodies were maintained for the duration of the co-culture. After 6 days of coculture cells

were washed and reseeded at 1x106/mL and restimulated with anti-CD3/CD28 Dynabeads (LifeTechnologies). 24 hours later super-

natants were collected to measure T cell cytokines. We systematically measured all Th outputs predicted to be associated either

to CD80 or CD86 (Figure 5B). Finally, we compared the estimated (in silico prediction) and the real (experimental) fold change

(FC) (Figure 5B). A FC higher or lower than one for a given Th output indicated an inhibitory versus inducer role of CD80/CD86,

respectively.

Addition of rhIL-12p70 during DC/T coculture
Sorted myeloid-DC were activated for 24 hours with zymosan (10 mg/mL) or HKSA (MOI 1). Then, 10,000 activated DC were cocul-

tured with 50,000 allogeneic naive CD4 T cells in the presence or absence of 10 ng/mL rhIL-12p70. After 6 days of coculture, 100,000

T cells were restimulated for 24 hours with anti-CD3/CD28 Dynabeads. Supernatants were then collected for cytokine

measurements.

DC-free Th cell polarization
Naive CD4 T cells were cultured for 5 days with only anti-CD3/CD28 Dynabeads (Life Technologies) to obtain Th0 or in combination

with either 10 ng/mL IL-12 (Th1), 25ng/mL IL-4 (Th2), 10 ng/mL IL-1b or IL-1a, 100 ng/mL IL-23, IL-12 plus IL-1b or amix of IL-1b, IL-23,

1 ng/mL TGF-b and 20 ng/mL IL-6 to obtain Th17 (Peprotech) as already published (Touzot et al., 2014). At the end of the culture cells

were used for intracellular staining or washed, reseeded at 1x106/mL and restimulated with anti-CD3/CD28 Dynabeads (Life Technol-

ogies) for 24 hours before collecting supernatants for cytokine measure and lysing cells in RLT buffer (QIAGEN) for qPCR analysis.

ICOS agonism
For experiments with anti-ICOS antibody, prior to culture 5 mg/mL anti-CD3 (OKT3 clone, Biolegend) with 5 mg/mL anti-ICOS or

matching isotype control were coated on a flat-bottom 96well plate (TPP) and incubated overnight at 4�C. The platewas thenwashed

3 times with PBS before seeding 32,000 naive CD4 T cells with 1 mg/mL anti-CD28 (CD28.2 clone, Biolegend) and cytokines as

described above in X-vivo medium (Lonza). After 5 days culture, T cells were counted and 100,000 cells were restimulated with

anti-CD3/CD28 Dynabeads for 24 hours before collecting supernatants for cytokine measure.

We were able to induce the following Th outputs in the Th0 condition: Exp Fold, IL,3, IL-5, IL-6, IL-10, IL-13, IL-22, TNF-a and

GM-CSF (Figure 5E). In a Th17 condition, we were able to demonstrate a positive effect of the ICOS pathway on the production

of IL-17A (Figure 5E). All these observations were statistically significant, and validated the model predictions. However, six predic-

tions on TNF-b, IL-2, IL-21, IL-17F, IL-4 and IL-31 could not be validated using these experimental settings (Figure S4C). For IL-17F,

IL-4 and IL-31 we could not detect a significant effect of ICOS (Figure S4C), suggesting possible lack of a co-factor. However, for

TNF-b, IL-2, IL-21 we found significant but opposite effects to the one predicted by the model, including the positive role of ICOSL

in the induction of IL-21 (Table S3).

CD2 agonism
For experiments with anti-CD2 agonist antibody, prior to culture 5 mg/mL anti-CD3 (OKT3 clone, Biolegend) with 5 mg/mL anti-CD2 or

matching isotype control were coated on a flat-bottom 96well plate (TPP) and incubated overnight at 4�C. The platewas thenwashed
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3 times with PBS before seeding 32,000 naive CD4 T cells with 1 mg/mL anti-CD28 (CD28.2 clone, Biolegend) and cytokines as

described above in X-vivo medium (Lonza). After 5 days culture, T cells were counted and 100,000 cells were restimulated with

anti-CD3/CD28 Dynabeads for 24 hours before collecting supernatants for cytokine measure.

We showed that our anti-CD2 antibody worked by studying the Exp Fold of naive T cells, cultured with anti-CD3 and CD28 with or

without anti-CD2. We found that anti-CD2 significantly induced T cell Exp Fold (Figure S7G).

Flow cytometry analysis
Antibodies and matched isotypes were titrated on the relevant human PBMC population. For surface FACS analysis on activated

MoDC and blood DC the complete list of antibodies and important information such as brand, final dilutions, reference, clone and

colors are given in Key Resources Table. Dead cells were excluded using DAPI (Miltenyi Biotec).

For intracellular cytokine staining, naive or memory CD4 T cells were stimulated with 100 ng/mL PMA, 500 ng/mL ionomycin and

3 mg/mL Brefeldin A (ThermoFisher) for 5 hours. To exclude dead cells, CD4 T cells were stained using the LIVE/DEAD Fixable yellow

dead cell stain kit, following manufacturer’s instructions (LifeTechnologies). Cells were fixed and permeabilized using the IC Fix and

Permeabilization buffers (ThermoFisher). Intracellular cytokines were revealed with fluorescently conjugated antibodies against

IL-17A (BioLegend), IL-17F (ThermoFisher), IL-21 (BioLegend), IL-22 (ThermoFisher), and IFN-g (BD), or matched isotype controls

and acquired on a Fortessa instrument (BD).

Cytokine quantification
Cytokines were quantified in dendritic cell supernatants using CBA flex set for IL-1a, IL-1b, IL-6, IL-10, TNF-a and IL-12p70 (also

named IL-12) and using Luminex for IL-23 and IL-28a. Cytokines from T cell supernatants were quantified using CBA flex set for,

IL-2, IL-3, IL-4, IL-5, IL-6, IL-9, IL-10, IL-13, IL-17A, IL-17F, TNF-a, IFN-g and GM-CSF (BD) and Luminex for IL-21, IL-22, IL-31

and TNF-b following the manufacturer’s protocol.

Gene expression quantification
At the end of the 5 days Th polarization and 24 hours restimulation, total RNAwas extracted from 100,000 cells using RNA easymicro

kit (QIAGEN). Total RNA was retrotranscribed using Superscript II Reverse Transcriptase (ThermoFisher Scientific) in combination

with random primers, Oligo(dT) and dNTP (Promega). Transcripts were then quantified by real time PCR on a 480 LightCycler

Instrument (Roche). Reactions were performed using a qPCR Master Mix Plus (Eurogentec) and TaqMan assays listed in the Key

Resources Table. Raw expression data (ct values) were normalized on the mean of two housekeeping genes (B2M and RPL34).

Anti-human ICOS monoclonal blocking antibody
The agonist ICOS antibody was produced for research purposes from the sequence made publicly available by JOUNCE

THERAPEUTICS in the patent US 2016/0304610, INC. The produced antibody corresponded to the following sequences of the

clone 37A10S713 with a human IgG1 isotype.

Heavy chain: EVQLVESGGGLVQPGGSLRLSCAASGFTFSDYWMDWVRQAPGKGLVWVSNIDEDGSITEYSPFVKGRFTISRDNAKN

TLYLQMNSLRAEDTAVYYCTRWGRFGFDSWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTS

GVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISR

TPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPR

EPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEAL

HNHYTQKSLSLSPGK

Light chain: IVMTQSPDSLAVSLGERATINCKSSQSLLSGSFNYLTWYQQKPGQPPKLLIFYASTRHTGVPDRFSGSGSGTDFTLTISS

LQAEDVAVYYCHHHYNAPPTFGPGTKVDIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQ

DSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC

Classical quality controls were performed to check that the produced anti-ICOS antibody had a correct, Purity (SDS-PAGE

reducing), Homogeneity (SEC-MALS) Mass (LC-MS) and binding to target (FACS).

QUANTIFICATION AND STATISTICAL ANALYSIS

Dataset quality control – batch effect
As quality control of our procedure we asked whether experimental batch effect could play a role in the differences we observed

across our dataset. Selecting the 6 most frequent perturbators within our MoDC dataset we performed principal component analysis

to look for batch effects related to the date of the experiments or the donor variability (Figure S1C).

Dataset quality control – T cell expansion
As a control, we could see that the Exp Fold profiles of CD4 T cells matched the activation profiles of DC observed in Figure 1C.

Indeed, T cells co-cultured with either LPS-MoDC, Zymosan-MoDC or Flu-DC induced significantly more expansion than the

negative Medium-DC control reflecting good quality controls of the experiments (Figure 3B).
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Statistical tests
In the figure legends, n is indicated and corresponds to the number of donors used for each experiment. Paired Wilcoxon or t test

were applied as detailed in figure legends to compare two groups. Significance was retained for *, p < 0.05.

Statistical analysis
Each variable of the dataset was transformed using first the Box-Cox transformation and then a scaling step on both the mean

and the variance (using TBoCo package). For all analyses performed, cytokine values inferior to 20 pg/mL were considered as 0,

as 20 pg/mL corresponds to the general detection limit of the assay. In order to cluster the inputs, outputs and the samples a hier-

archical clustering approach was applied by using different criterions: Ward’s criterion and Pearson correlation metric were used to

cluster the inputs and the outputs, whileWard’s criterion and the Euclideanmetric were used to cluster the samples or DC conditions.

The heatmaps were generated by using the heatmap.2 package. The correlations between the continuous variables were computed

by using the Pearson correlation. All statistical tests are called ‘‘significant’’ if their p value is smaller than 0.05. The p values were

corrected using Benjamini-Hochberg correction.

Boxplots represented are Tukey Boxplot, meaning that the box goes from the first to the third quartile, it is cut by the median and

the whisker goes from the upper (resp. the lower) whisker extends from the third (resp. the first) quartile to the largest (resp. the small-

est) value no further than 1.5 * IQR from the third (resp. The first) quartile (where IQR is the inter-quartile range, or distance between

the first and third quartiles). Data beyond the end of the whiskers points and are plotted individually.

The fold change represented in Figures 5B and S4A represent the value (real or estimated) of an output in the absence of CD80 and

CD86 divided by the value of the output in the same sample when CD80 and CD86 are present.

Model comparison and ROC Curves
In order to test different multivariate statistical modeling strategies, and to compare them in terms of false and true positive rates, we

generated a simulated dataset thatmimics the features of our DC and T cell experimental data, but for whichwe arbitrarily attributed a

link between DC communication signals and Th cytokines, the whole strategy is detailed below.

The Figure S3A aims at assessing the performance of our modeling strategy in terms of variable selection and comparing it with

other variable selectionmethodologies. In order to do this, we performed numerical experiment: we used the real input dataset called

hereafter X, simulated a random error matrix (E) with a block covariance matrix to mimic the Th subset and amatrix of coefficients (B)

to mimic the effect of the inputs on the outputs. Using these three matrices we created a new output matrix Y = XB+E. On this new

matrix Y we applied different modeling strategies. 1) The sPLS, 2) the classical Lasso, applied to each column of Y (namely each

output) independently (Lasso without covariance) 3) Our methodology, called MultivarSel, (described in the Modeling strategy sec-

tion), which consists in estimating the covariance matrix of E and use it to remove the dependence between the outputs before

applying the Lasso methodology (Lasso empirical covariance) 4) Lasso with real covariance matrix, the same methodology than

ours, but with the real covariancematrix of E, corresponding to the internal positive control of this analysis. We also assessed stability

selection by adding this analysis step to the three last methods (Lasso with stability selection and without covariance, Lasso with

stability selection and empirical covariance, Lasso with stability selection and real covariance matrix). For each part of this method-

ology, we varied the threshold to vary the number of variables that were kept and calculated for each threshold the True Positive Rate

(TPR) and the False Positive Rate (FPR). The TPR is the number of variables that have been properly identified as being relevant for

explaining the response divided by the total number of explanatory variables.

We also wanted to assess the sparsity: the percentage of non-zeros in thematrix B. Namely the percentage of pairs of input-output

that actually interact together. To do this, we made different scenarios with high and low sparsity (0.01 and 0.3). For all of these sce-

narios we simulated 1000 different Y, so we performed all this methodology 1000 times each andwe calculated at each time, for each

methodology and for each threshold the TPR and the FPR.We then took themean of this TPR and FPR for eachmethodology and for

each threshold. We also assessed the importance of the stability selection.

We can see that our MultivarSel Strategy (Lasso empirical covariance) provides better results than sPLS and Lasso without covari-

ance. Moreover, we observed that its performance is similar to Lasso with the real covariance matrix (the positive control), which

means that we greatly estimated the dependence among the outputs. We also noted that the larger the sparsity level, the smaller

the differences of performance between MultivarSel (Lasso empirical covariance) and Lasso without covariance, while the differ-

ences between Lasso empirical covariance and sPLS are bigger. We can see that adding the stability selection step improves a

lot the results.

Modeling strategy
In order to select the most relevant inputs for modeling the outputs, we used the linear model methodology recently developed in

Perrot-Dockès et al. (2018b) which has already been successfully applied to metabolomics data in Perrot-Dockès et al. (2018a).

The great advantage of such an approach is to propose a Lasso-based criterion (Tibshirani, 1996) taking into account the depen-

dence that may exist between the outputs. The parameters involved in the criterion are chosen thanks to 10-fold cross-validation

and stability selection with 1000 resampling (Meinshausen and Bühlmann, 2010). The numerical experiments were performed using

the real inputs dataset. Then, in order to mimic the Th groups, a random error matrix having a blockwise constant covariance matrix

was generated.
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The ROC curves display the True positive rate (TPR) as a function of the False positive rate (FPR) where the TPR is the number of

variables that have been properly identified as being relevant for explaining the response divided by the total number of explanatory

variables. The FPR is the number of variables that have been wrongly identified as being relevant for explaining the response divided

by the total number of variables that do not explain the response. To look for a context dependent role of IL-12p70 in the presence of

another input we performed the samemethodology but instead of modeling the outputs by using only the inputs, some new variables

were added: they correspond to a combination of IL-12p70 with the other inputs. More precisely, for instance, the variable ‘‘IL-12p70

with IL-1’’ is equal to the value of IL-12p70 for the samples having a positive concentration in IL-1 and to zero for the samples for

which the concentration in IL-1 is equal to zero.

We propose the following modeling for the outputs:

Y = XB+E; (1)
where Y denotes the n3q output matrix, X denotes the n3p des
ign matrix containing the inputs, B is an unknown p3 q coefficient

matrix and E is the n3q random error matrix. Here, n corresponds to the number of samples, q is the number of outputs and p

denotes the number of inputs. In order to take into account the potential dependence that may exist between the outputs, we shall

assume that each row i of E satisfies:

ðEi;1; .;Ei;qÞ � Nð0;SqÞ; (2)
where Sq denotes the covariance matrix of the ith row of the ran
dom error matrix.

In order to select the most relevant inputs for explaining the outputs, the methodology that we propose can be summarized in the

following three steps:

First step

Fitting amultiple regression model to each output to have an estimation of the error matrix: bE and computing its empirical covariance

matrix.

Second step

Using this empirical covariance matrix to remove the dependence in E, namely between the outputs.

Third step

Selecting among the inputs the most relevant for explaining the outputs by applying a Lasso approach to the transformed data as

explained in the second step.

First step

Residuals and covariance matrix. We obtained an ordinary least square (OLS) estimator of B by fitting a multiple regression model

which is not a variable selection method. More precisely, the corresponding estimator bBOLS
is defined by

bBOLS
= ArgminB

n
kY �XBk22

o

Using bBOLS
we got an estimation of E: bE = Y � X bBOLS

. Then, w
e computed the empirical covariance matrix bSq of bE.
Second step

Transformation. Let us recall that the standard Lasso criterion, proposed by Tibshirani (1996) estimates B in the following univariate

linear model:

Y = XB+E; (3)
by
bBðlÞ = ArgminB

n
kY � XB k 2

2 + lkB k 1

o
; (4)
where Y , B and E are vectors. Usually, the components of E are
 assumed to be independent.

Thus, we proposed to transform Model (1) to be able to use the Lasso criterion as follows. First, we removed the dependence

among the outputs:

Y bS�1=2

q = XBbS�1=2

q +EbS�1=2

q ; (5)
where bS�1=2
denotes the inverse of the square root of Sq.
q

Then, we applied the vec operator which consists in stacking the columns of a matrix into a single column vector.

Y = vec
�
Y bS�1=2

q

�
= vec

�
XBbS�1=2

q

�
+ vec

�
EbS�1=2

q

�

= vec
��bS�1=2

q

�0
5X

�
vecðBÞ+ vec

�
EbS�1=2

q

�
=Xb+ ε:
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Third step: Variable selection

Thanks to the previous transformation, the Lasso criterion can be applied to y = vecðY bS�1=2

q Þ. Since B = vecðBÞ, estimating the

coefficient of B boils down to estimating the coefficients of B. The parameter l in (4) is chosen by 10-fold cross-validation followed

by a stability selection step with 1000 resamplings, as proposed by Meinshausen and Bühlmann (2010).

The squared error of prediction of the different models were assessed using 10-fold cross-validation (Figures 4A, 6B, S3D, S3E,

and S5A).

Systematic literature review
To assess the literature and evaluate the generated multivariate model of Figure 4B, we conducted a systematic literature review to

identify articles indexed on the PubMed database by March 1st 2017, examining the effects of inputs on naive CD4+ cells.

One of three different search strategies was used to export references from the PubMed database into the reference management

software EndNote.

We started by performing the first search strategy which consisted of using free text to search English language articles for the

input (or any of its aliases) and the output (or any of its aliases). If the search yielded 20 or less results, the references were exported

into EndNote.

If not, thenwe performed the second search strategy, which consisted of searching English language articles for the input (or any of

its aliases) and the output (or any of its aliases), both in the title or abstract, and at least one of the following medical subject heading

terms: ‘‘cell differentiation’’ or ‘‘CD4-positive T-lymphocytes’’ or ‘‘lymphocyte activation». If the search returned 50 or less results, the

references were exported into EndNote. If not, then we carried out the third search strategy which returned English language articles

that had both the input (or any of its aliases) and the output (or any of its aliases) in the title or abstract, as well as indexes to both of the

following medical subject heading terms: ‘‘cell differentiation’’ and ‘‘CD4-positive T-lymphocytes.’’ Results were exported into

EndNote.

The electronic searches generated a total of 14,748 references that were managed through EndNote. A manual search of refer-

ences from review articles and other records identified 21 additional publications that were not included in the search results.

Of these 14,769 articles, 9,780 duplicates were removed, leaving 4,989 records to be screened.

Titles and abstracts were screened by 2 independent reviewers. Publications were selected for further in-depth consideration if

they met all of the following inclusion criteria: 1) Journal Article, 2) Examining the effect of one input at a time, 3) Testing on naive

CD4+ T cells, which were defined as CD4+ and CD45RA+ and/or CD45RO- and/or CD25- cells. Studies were excluded from the

analysis if: 1) Full-text article, Title and/or abstract were not available, 2) Methods and/or experiments and/or results were unclear

or inconclusive or of low quality. Reasons for removing articles included not performing proper experimental controls, insufficient

information, lack of replicates and/or statistical analysis.

The reviewers excluded 4,589 articles because they did not meet the inclusion and exclusion criteria, leaving 400 articles of which,

at least, the figures and materials and methods sections were examined. Finally, 178 publications met all the inclusion criteria and

underwent data extraction.

Extracted information included the PubMed identifier, the input, the output, the input’s effect on naive CD4+ T cells in regards to the

output, the experimental context and setup (e.g., details about T cell stimulation context, input’s concentration, duration.) and the

organism. Data were cross-checked by the 2 reviewers, and any ambiguities were discussed and resolved through a consensus.

The Exp Fold was not included in the literature review so it was not included in the following literature validation score.

Calculation of the literature validation score: an association predicted by ourmodel (Figure 4B) between an input and an output was

considered as ‘‘new’’ if none of the 178 publications found that the input induces or inhibits the output. Absence of effect depicted in

some articles was not considered relevant to assess novelty of the prediction. It was ‘‘validated’’ if at least one of the 178 publications

found similar results than our model and ‘‘contradictory’’ if none of the study found the same results than our model but at least one

found an opposite result. Opposite result would be an induction if the model predicted a negative coefficient or an inhibition if our

model predicted a positive coefficient.

DATA AND CODE AVAILABILITY

The dataset generated during this study is available in Table S2.

All references from literature mining are listed in Table S3.

Software used for flow cytometry data analysis was FlowJo software (TreeStar).

Software used for CBA analysis was FCAP Array v3.

Software used for statistical analysis was Prism software v5 (GraphPad).

Software used for statistical analysis and modeling was R version 3.5.2.

The R packages used to perform this study are: packageMultiVarSel 1.0. used formodeling ( available at https://cran.r-project.org/

web/packages/MultiVarSel/index.html) and package TBoCo 0.0.1 for boxcox transformation available at https://github.com/

Marie-PerrotDockes/TBoCo.

This study did not generate code.
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29 surface markers measured by flow cytometry shown on one representative donor.

Figure S1. Descriptive Analysis of 36 DC-Derived Communication Molecules, Related to Figures 1 and 2

A) Example of raw FACS staining ofMoDC communicationmolecules after 24 hours stimulation withMedium, LPS, Zymosan or Flu. 29 surfacemarkersmeasured

of one representative donor are shown. B) Statistical analysis comparing a given DC stimulation to the other 3 for each signal annotated. P values are annotated in

the table, red should be considered as significant. Paired Wilcoxon test was used (n = 14). C) PCA performed either on the whole dataset (left and middle panel)

or on the 6 most frequent perturbators (right panel) used across MoDC and bDC stimulations. From left to right colors respectively indicates, the dates of

experiments, the DC subset, the 6 most frequent DC stimulations.
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Figure S2. Mathematical Description and Statistical Analysis of Th Cytokine Profiles, Related to Figure 3

A) Table showing three keymathematical parameters of the Exp Fold and the 17 Th derived cytokines. First column: the range of expression (the number of log on

which the data are expressed). Second column: the percentage of positive observations among the 428 datapoints. Third column: the coefficient of variation.

Communication molecules were ranked based on their range of expression and their coefficient of variation. B) Statistical analysis comparing selected Th

cytokines within the following groups: Medium-MoDC, LPS-MoDC, Zymosan-MoDC and Flu-MoDC. The statistical test used is paired Wilcoxon test on n = 14

donors. C) Expression profiles of the Exp Fold and the 17 Th derived cytokines within the six groups of DC conditions defined by hierarchical clustering.

Expression data were logged transformed and scaled so as m represents the mean and s the SD of the expression of a given communication molecule across the

whole dataset (n = 428).
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Figure S3. Multivariate Modeling Strategies Applied to Our DC-T Cell Datasets, Related to Figure 4
A) Comparative analysis of distinct modeling strategies on simulated data. Using ROC curves, we applied the annotated strategies in terms of true and

false discovery. The simulated dataset mimics the features of our DC and T cell experimental data but for which we artificially attributed a link between DC

signals and Th cytokines. This allowed us to compare four different types of modeling strategies (Raw, OR, MultivarSel and sPLS) and different variable

selection methods (Lasso, Stability Selection and CV) by analyzing their false and true positive rates. B) Frequency of selection of input variables es-

tablished through model stability selection. Stability selection was applied after our MultivarSel strategy to the full DC-T dataset (n = 428). C) Table

(legend continued on next page)



showing for each output (Th signals) the input that minimizes its mean squared error of prediction in an univariate model, with its spearman correlation

coefficient and its adjusted p value. D) Error of prediction (obtained by 10-fold cross-validation) of the model respectively on blood DC dataset (n = 118)

and MoDC dataset (n = 310) E) Example of distribution of the squared error of prediction per DC-type for IL-22, TNF-b and Exp Fold. Allows to see the

number of data points with the highest error of prediction.
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Figure S4. Complementary Th Secretion Profiles of the Tested Conditions for Systematic Model Validation, Related to Figure 5

A) Fold change of the cytokine concentration estimated versus experimentally measured for the four indicated cytokines. n = 6 independent donors B) Mean

cytokine concentration and SD indicated for each condition. n = 6 C) Mean cytokine concentration and SD indicated for each condition. n = 6 D) and E) Mean

cytokine concentration and SD indicated for each condition. n = 6 F) Boxplot of the coefficient and stability selection frequencies in the two conditions: True

(validated predictions) and False (not validated), Wilcoxon test. Performed only for IL-12, IL-1 and ICOSL validations.
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Figure S5. Quantification of Context-Dependent Input-Output Associations, Related to Figure 6

A) Prediction of error comparison betweenMultiVarSel and ‘‘all_with model’’ performed for each Th output. B) Quantification per input of the number of times it is

selected as associated to an output in the 36 context-dependent models (Table S5). The total number of associations (resp. the number associations of the input

alone, resp. the input with another) is represented in the column ‘Number’ (resp. Number alone, resp. Number with) the ratio (Number with / Number) is rep-

resented in the column ‘Percentage’ C) Same as panel B but per output instead of input. D) On 8 distinct donors of cocultureMoDC/naive CD4 T cells experiments

IL-12 was blocked using neutralizing antibody. After the coculture at day 6, Th cells were restimulated 24 hours at 1 million cells/mL and the amount of IFN-gwas

determined using CBA. Paired Student’s t test was applied to compare two conditions. E) Model predictions on IL-12 in silico KO in the condition MoDC-curdlan

(10 mg/mL) for IL-17A and IL-17F values. Real values in the presence of IL-12 are compared to predicted values obtained in the absence of IL-12. F) Concen-

trations of IL-17A, IL-17F and IFN-g produced by Th cells after coculture with MoDC treated with 10 mg/mL curdlan, in the presence of neutralizing antibody

specific for IL-12 or matching isotype. n = 4 donors. Paired t test was performed to compare the means.
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Figure S6. In-Depth Characterization of Th Cells Polarized under the IL-1+IL-12 Condition, Related to Figure 7

A)Multivariate model explaining the differences between IL-17F and IL-17A for a stability selection threshold of 0.8. B) Cytokine profiles of Th cells differentiated in

distinct cytokine condition: Th0 (medium), Th2 (IL-4), IL-12, IL-1 (IL-1b), IL-12+IL-1 and Th17 (IL-6+IL-1b+TGF-b+IL-23), measured by CBA on 6 donors. Paired

Student’s t test was used for statistical analysis. C) IL-17A and IL-17F were measured by CBA in the supernatants of Th cells differentiated in distinct cytokine

condition:Med, IL-12, IL-1b, IL-6, IL-23, TGF-b, IL-12+IL-1b, IL-6+IL-12, IL-23+IL-12, TGF-b+IL-12, IL-6+IL-23+IL-1b+TGF-b. This experiment was performed on

3 donors. D) Comparison in the same naive CD4 DC-free culture system of the effect of IL-1a and IL-1b on the production of six distinct cytokines: IFN-g, IL-17A,

IL-17F, TNF-a, IL-13, IL-10. This experiment was performed on 3 donors. E) DC-free differentiation assay performed using anti CD3/CD28 beads in the indicated

cytokine conditions. n = 6,Wilcoxon test was used for statistics. F) Example of FACSCTV staining for Th proliferation assessment at day 5. G) Quantification of the

% of alive cells in each peak of the CTV staining for each condition. n = 3, paired t test was performed H) qPCR expression profiles for selected genes in the

following conditions Th0, Th2, IL-12, IL-1b, IL-12+IL-1b, Th17 (IL-6+IL-23+IL-1b+TGF-b). n = 6. Wilcoxon test was used.
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Figure S7. Detailed Description of Distinct Experimentally Validated Predictions,

A) PCA using 63 genes measured by qPCR in the 6 indicated Th conditions B) Detailed descriptions of the contribution of each 63 genes to the two first di-

mensions of the PCA represented in A). C) Systematic univariate analysis evaluating the Pearson correlation between IL-17A and IL-12 in the presence of IL-23

and another input (listed in the column ‘Inputs’) the number of samples having both of these inputs is in column ‘Number’. D) Pearson correlation between IL-17A

and IL-12 in the presence or absence of IL-1 and IL-23. E) Dot plot representing the correlation between IL-12 and IL-17A on IL-23 positive data points. F) qPCR

measuring RORc, IL-17A and IL-17F in the indicated conditions. n = 6 independent donors. Wilcoxon test was used for statistical analysis G) Positive control

showing the validation of the anti-CD2 agonist antibody through the measure of Exp Fold in the Th0 condition n = 8 H) Representative intracellular cytokine

staining for IL-17A and IL-17F performed in the Th17 and Th17+anti-CD2 conditions. I) Quantification of the intracellular FACS staining performed in H) for 8

distinct donors. Wilcoxon analysis. J) Representative raw data staining of intracellular FACS for IFN-g, IL-21, IL-22, IL-17A and IL-17F in 6 distinct conditions,

Th0 (medium), Th2 (IL-4), IL-12, IL-1 (IL-1b), IL-12+IL-1 and Th17 (IL-6+IL-1b+TGF-b+IL-23) for naive CD4 culture. K) Representative raw data staining of

intracellular FACS for IFN-g, IL-21, IL-22, IL-17A and IL-17F for memory CD4 purified cells, previously isolated bymagnetic sorting, and restimulated 5 hours with

PMA/ionomycin.
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